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Ranking and Selection

Problem: Select from among k simulated alternatives (systems).
▶ Output of System i is assumed to be distributed as N(µi , σ

2
i ) for i = 1, 2, . . . , k .

▶ Means µi and variances σ2
i are unknown.

▶ Seek to minimize the expected (mean) output.

Approach:

1. Allocate a budget of n simulation replications across systems.
2. Calculate sample means µi ,n for i = 1, 2, . . . , k.
3. Select System Dn := argmin1≤i≤k µi ,n.

Goal: Maximize the probability of correct selection (PCS):

PCSn := P

(
Dn = argmin

1≤i≤k
µi

)

How should we allocate the n replications to achieve this goal?
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Large Deviations Analysis for PCS

Assume µ1 < µ2 ≤ . . . ≤ µk and that the means and variances are known.

Results from Glynn and Juneja (2004)

For any static allocation α = (α1, α2, . . . , αk) ∈ ∆k ,

lim
n→∞

−1

n
log(1− PCSn)︸ ︷︷ ︸

large deviations rate (LDR)

= min2≤i≤k Gi (α), where

Gi (α) := lim
n→∞

−1

n
logP(µi ,n ≤ µ1,n) =

(µi − µ1)
2

2
(
σ2
1/α1 + σ2

i /αi

) for i = 2, 3, . . . , k .

The LDR is determined by the hardest system to distinguish from System 1.

The optimal allocation for maximizing the rate at which the PCS approaches 1 is

αpcs := argmaxα∈∆k min2≤i≤k Gi (α).
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Good Selection

Let δ > 0 be a user-specified tolerance and assume that

µ1 ≤ µ2 ≤ · · · ≤ µℓ︸ ︷︷ ︸
ℓ good systems

≤ µ1 + δ < µℓ+1 ≤ · · · ≤ µk︸ ︷︷ ︸
k − ℓ bad systems

for some 1 ≤ ℓ < k .

Relaxed Goal: Maximize the probability of good selection (PGS):

PGSn = P(Dn ∈ {1, 2, . . . , ℓ}).

In terms of the PGS goal, αpcs allocates too much effort to the good systems.
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Large Deviations Analysis for PGS

Results from Kim et al. (2022)

The optimal allocation for maximizing the rate at which the PGS approaches 1 is

αpgs := argmaxα∈∆k minℓ+1≤j≤k G̃j(α), where

G̃j(α) = minx∈[µ1,µj ]

{
αj

2σ2
j

(x − µj)
2 +

∑
1≤i<j

αi

2σ2
i

[(x − µi )
+]2

}
for j = 2, 3, . . . , k .

Can derive necessary and sufficient conditions for αpgs based on the KKT conditions.
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Zero-Sampling Phenomenon

Unlike αpcs, some components of αpgs are zero!

▶ This only occurs for good systems.

What does zero sampling mean?

▶ Asymptotically, we allocate a vanishing fraction of the budget to that system.

Why does zero sampling occur?

▶ Easier to determine that some good systems are good than other good systems.
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Numerical Example

Example with k = 10 systems (2 good, 8 bad) and where µ1 = 1 and δ = 1.

Systems 1 and 2 take turns receiving zero sampling.
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When Does Zero Sampling Occur?

Sufficient conditions

For any System j ≤ ℓ, if µℓ+1−µi

σi
>

µℓ+1−µj

σj
and µi ≤ µj for some i ̸= j , then αpgs

j = 0.

Stronger sufficient conditions

For any System j ≤ ℓ, if µi ≤ µj and σ2
i < σ2

j for any i ̸= j , then αpgs
j = 0.

Necessary and sufficient conditions (for k = 3)

Assume µ1 < µ2 ≤ µ1 + δ < µ3.

▶ αpgs
1 > 0 and αpgs

2 > 0 if and only if µ3−µ1
σ3+σ1

= µ3−µ2
σ3+σ2

;

▶ αpgs
1 > 0 and αpgs

2 = 0 if and only if µ3−µ1
σ3+σ1

> µ3−µ2
σ3+σ2

; and

▶ αpgs
1 = 0 and αpgs

2 > 0 if and only if µ3−µ1
σ3+σ1

< µ3−µ2
σ3+σ2

.
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Plug-in Algorithm with Batch Allocation

1. Run n0 replications of each system and update estimates µi ,n and σ2
i ,n.

2. Define In := {i : µi ,n ≤ min1≤j≤k µj ,n + δ}, the set of all systems that look good.

3. Solve the following optimization problem:

αn = argmaxα∈∆k minj /∈In G̃j ,n(α),

where G̃j ,n(α) is a plug-in version of G̃j(α).

4. Draw a sample of size B from a multinomial distribution with probability αn.

5. Take prescribed additional replications and update µi ,n and σ2
i ,n accordingly.

6. If budget not exceeded, return to Step 2.
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Empirical PGS

S = Static B = Batch
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Two Bad Scenarios
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Sample Path of Sample Means

Sample path under Bad Scenario 1.

Samples paths like this can be used to prove that Algorithm πB(δ) is inconsistent. 11



A Mixture-Based Approach

We propose sampling according to a convex combination of αpgs and αpcs:

α(ε) := (1− ε)αpgs + εαpcs

for some ε ∈ (0, 1).

Why mix with αpcs?

▶ αpcs is aligned with making a correct (and therefore good) selection.

▶ Expected to perform better than ε-random sampling.
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Performance of Mixing
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Performance of Mixing
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Conclusion

Takeaway

R&S problems having multiple good systems can have optimal allocations for PGS
having zero sampling ratios, leading to performance issues with adaptive algorithms.

Future Research

▶ Necessary conditions for systems to have zero sampling ratios.

▶ Other algorithm-design remedies for issues caused by zero sampling ratios.

▶ Exploring other selection rules for cases with multiple good systems.
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