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Introduction

Stochastic constraints are inequality constraints involving expected values of rvs.
I Encompasses chance constraints, which involve probabilities.

Arise naturally in practice as bounds on acceptable secondary performance.
I E.g., mininum service requirements in a service system.

Past research has focused on solution methods (a.k.a. algorithms) for problems of
I stochastically constrained optimization (Hunter and Pasupathy, 2013; Homem-de

Mello and Bayraksan, 2014, 2015) and
I feasibility determination (Gao and Chen, 2017; He and Kim, 2019; Shi et al.,

2022).

This Talk

How feasible or infeasible is a given solution and how sure are we?
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Call-Center Example

Problem of staffing a call center with a time-non-homogeneous arrival process.

I A 16-hour day is split into J = 32 30-minute periods.

I Let xk be the number of workers in Shift k, k = 1, 2, . . . ,K .

Expected staffing cost is
∑K

k=1 ckxk + EO(x) where O(x) is random overtime cost.

Long-run fraction of late calls is ELj(x)/nj where nj is the expected number of
customers arriving during period j .

Want both low expected staffing costs and low expected fraction of late calls.
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Formulations as an Optimization Problem

Weighted Objectives

min
x∈ZK

+

K∑
k=1

ckxk + EO(x) +
J∑

j=1

βjELj(x)/nj .

Multiple Objectives

min
x∈ZK

+

{
K∑

k=1

ckxk + EO(x) and ELj(x)/nj for j = 1, 2, . . . , J

}
.

Stochastic Constraints

min
x∈ZK

+

K∑
k=1

ckxk + EO(x) subject to ELj(x)− pnj ≤ 0 for j = 1, 2, . . . , J.
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Stochastically Constrained Simulation Optimization

Generic Formulation

min
x

f (x) = EF (x , ξ)

s.t. g(x) = EG (x , ξ) ≤ 0

h(x) ≤ 0

x ∈ D.

Estimate f (x) by F̄ (x) = 1
n

∑n
i=1 F (x , ξi ) and g(x) by Ḡ (x) = 1

n

∑n
i=1 G (x , ξi ).

I Let G (x , ξ) be vector valued, with r being the number of stochastic constraints.
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Visualizing Stochastic Constraints

Input (x) space Output (g) space
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Setup

Fix a solution x ∈ D and sample size n.

Recall that Ḡ (x) is our estimator for g(x) = EG (x , ξ) based on n replications.

I We will use Ḡ and g for shorthand, and ḡ for the realized value of Ḡ .

Naive approach: If Ḡ ≤ 0, then x looks feasible. If Ḡ � 0, then x looks infeasible.

Two shortcomings:

1. Does not indicate the degree to which x is feasible (or infeasible).

2. Fails to reflect the uncertainty about x ’s feasibility.

We will see a series of potential metrics aimed at overcoming these shortcomings.
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Feasibility Scores

Feasibility scores are based on measures of how close g is to satisfying or violating
the stochastic constraints, were g known.

We don’t know g , so we use ḡ as a plug-in:

s(ḡ) =

{
inf{d(y , ḡ) : y � 0} if ḡ ≤ 0,

− inf{d(y , ḡ) : y ≤ 0} if ḡ � 0,

where d(·, ·) is some distance function for Rr .

In other words, s(ḡ) is the minimum distance between ḡ and the boundary of the
non-positive orthant.

Need to solve one optimization problem, based on whether ḡ ≤ 0 or ḡ ≥ 0.
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Feasibility Scores

If s(ḡ) ≥ 0, then x looks feasible. If s(ḡ) < 0, then x looks infeasible. If s(ḡ) = 0,
then at least one constraint is binding.

Feasibility and infeasibility are given equal importance.

Feasible solutions are not regarded as equally feasible. Ditto for infeasible solutions.

For the Lp distance function d(y , ḡ) = ‖y − ḡ‖p = (
∑r

i=1 |yi − ḡi |p)1/p for p ≥ 1,

s(ḡ) =

{
−maxl ḡl if ḡ ≤ 0,

−‖ḡ+‖p if ḡ � 0;

where ḡ = (ḡ1, ḡ2, . . . , ḡr ) and ḡ+ = max(ḡ , 0) element-wise.
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Confidence Intervals for Feasibility Scores

We can quantify the (simulation) error in the estimated feasibility score via the
percentile bootstrap.

Approach:

1. Bootstrap the individual observations G (x , ξi ) for i = 1, 2, . . . , n.

2. For each bootstrap instance, compute the feasibility score for the realized ḡ .

The α/2 and 1− α/2 sample quantiles of these bootstrapped feasibility scores give an
approximate 100(1− α)% confidence interval for the true feasibility score s(g).
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A Hypothesis-Testing-Inspired Metric

Suppose we were to test the hypothesis

H0 : g0 ≤ 0 versus H1 : g0 � 0.

Generalized likelihood ratio tests would suggest the test statistic

−2 ln

(
supg0≤0 L(g0)

supg0∈Rr L(g0)

)
,

where L(g0) is the likelihood of ḡ as a function of the g0.

Assuming Ḡ ∼ Nr (g0,Σ/n), the test statistic simplifies to

inf
g0≤0

(ḡ − g0)ᵀ(Σ/n)−1(ḡ − g0) when ḡ � 0.

A similar test statistic arises from the test H0 : g0 � 0 versus H1 : g0 ≤ 0 for ḡ ≤ 0.
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A Hypothesis-Testing-Inspired Metric

Put the two cases together and replace unknown Σ with plug-in estimator S :

`(ḡ) =

{
infg0 6≤0(ḡ − g0)ᵀ(S/n)−1(ḡ − g0) if ḡ ≤ 0,

− infg0≤0(ḡ − g0)ᵀ(S/n)−1(ḡ − g0) if ḡ � 0.

`(ḡ) is the difference of two squared Mahalanobis distances (one of which is 0).

I Removes the effects of scalings and correlations in components of Ḡ .

I Reflects how some “feasibility directions” may be easier to achieve than others.

Downside: `(ḡ) depends on n and will in general converge to ±∞ as n→∞.

I Misaligned with motivation of a risk-neutral decision-maker.

I Replacing S/n with S does not resolve the risk-neutral issue.
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Bayesian-Inspired Metrics

Bayesian perspective:

I True mean g and true covariance matrix Σ are random.

I Their posterior distribution depends on priors and observed simulation outputs.

Assumptions:

I Conjugate setup: g | Σ ∼ N (0,Σ) and Σ ∼ InverseWishart.

I Conditional on g and Σ, G (x , ξ1),G (x , ξ2), . . . ,G (x , ξn)
i .i .d .∼ Nr (g ,Σ).

For choice of non-informative prior, the marginal posterior distribution of g is given by

g ∼ Tn−r

(
ḡ ,

1

n(n − r)

n∑
i=1

(G (x , ξi )− ḡ)(G (x , ξi )− ḡ)ᵀ

)
= Tn−r (ḡ ,S/n) .
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Expected Feasibility Score

With the posterior distribution, we can calculate the expected feasibility score,

E(s(g)|F),

where E(· | F) indicates expectation over the posterior distribution.

Entails integrating a multivariate t density against a piecewise function.

I If not directly computable, Monte Carlo can provide an approximation.

Notice

Degree of feasibility and its uncertainty are rolled into one metric.
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Posterior Probability of Feasibility

Alternatively, we can compute the posterior probability of feasibility

P(g ≤ 0|F) = Φn−r (−
√
nS−1/2ḡ),

where Φn−r (·) is the cumulative distribution function of a standard MVT with n− r df.

Entails integrating a multivariate t density over the non-positive orthant.

Not usually computable in closed form.

I Software can compute for modest r (say, ≤ 25).

I Or approximate via Monte Carlo if r is large.
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A Bootstrap Estimator

An alternative to posterior probability of feasibility is

p̂ =
1

B

B∑
b=1

I(ḡ∗b ≤ 0),

where ḡ∗ = n−1
∑n

i=1 G (x , ξ∗bi ) is the estimated LHS vector for bootstrap instance b.

Advantages:

I Does not rely on a normality assumption and avoids numerical integration.

I Should be reasonably accurate so long as n is sufficiently large.

15



Use Cases

How could these metrics be used?

1. Within a solver, to assess whether it has drifted into/out of the feasible region.
I Navigation is less clear, but directional derivatives of these metrics (w.r.t. x) might

be useful.

2. For studying a solver’s search behavior.
I How does it approach the terminal solution?
I How aggressively does it enforce feasibility in the solutions it visits or recommends?

We are primarily interested in #2, as it pertains to experiments in SimOpt.

Goal: Augment plots of solver progress (in terms of objective function value) with
some visualization of feasibility of recommended solutions.
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Plotting Feasibility

Mock plots simultaneously depicting feasibility and optimality.

Aggregating feasibility metrics over multiple macroreplications remains a challenge.
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Conclusion

Takeaway

There are many ways to quantify the (in)feasibility of solutions to stochastically
constrained optimization problems; most (so far) are imperfect.

Future Work:

I Incorporating in plots in SimOpt.

I Design of solvers that employ these metrics to direct their search.

I Theoretical and empirical analysis on consistency and CI coverage.

18


