
Evaluating and Comparing Simulation-Optimization
Algorithms

David J. Eckman
Wm Barnes ‘64 Department of Industrial and Systems Engineering

College Station, Texas 77843

Shane G. Henderson
School of Operations Research and Information Engineering

Cornell University
Ithaca, New York 14853

Sara Shashaani
Edward P. Fitts Department of Industrial and Systems Engineering

North Carolina State University
Raleigh, North Carolina 27695

Abstract

Simulation optimization involves the optimization of some objective function that
can only be estimated via stochastic simulation. Many important problems can be
profitably viewed within this framework. While many solvers—implementations of
simulation-optimization algorithms—exist or are in development, comparisons among
solvers are not standardized and are often limited in scope. Such comparisons help
advance solver development, clarify the relative performance of solvers and identify
classes of problems that defy efficient solution, among many other uses. We develop
performance measures and plots, and estimators thereof, that can be used to evaluate
and compare solvers on a testbed of simulation-optimization problems. We explain the
need for two-level simulation in this context and provide supporting theory to guide
the use of common random numbers to achieve efficient comparisons. We also describe
how to use bootstrapping to obtain error estimates for the estimators.

1 Introduction and Motivation

Simulation optimization (SO) involves the optimization of some objective function over a
(possibly constrained) feasible region, where at least one of the objective and constraint func-
tions is estimated through a stochastic simulation. The decision variables for such problems

1

can be continuous, integer-ordered or even categorical. Such problems are typically highly
challenging because stochastic simulation yields estimators that are slow to converge; the
canonical error is of stochastic order c−1/2, where c is a measure of the computational effort
devoted to the simulation. Moreover, many SO problems lack structure such as smoothness
that might be exploited by specialized solvers, i.e., implementations of algorithms for solving
SO problems.

The development of SO solvers is an active area of research. Much effort has been
devoted to the design of solvers with provable convergence guarantees, whether to local or
global solutions, e.g., Kushner and Yin [2003], Andradóttir [2006, 2015], Cooper et al. [2020]
and Li and Ryzhov [2020]. Such convergence analyses are valuable and insightful, yet are
typically most relevant in an asymptotic regime where the computational effort becomes
very large, especially in the case of results for global optimization. Since that regime can be
difficult to reach in practice, there is a need to better understand the pre-asymptotic regime,
where algorithms have yet to narrow in on a neighborhood of an optimal solution. This
regime can be very difficult to explore analytically, although some results are available, e.g.,
Ghadimi and Lan [2015].

The pre-asymptotic regime can be investigated through the use of a testbed of SO prob-
lems and solvers; see Fu [2002] and Glynn [2002] for the germ of this idea and, e.g., Chau and
Fu [2015] and Dong et al. [2017] for recent examples of simulation experiments assessing the
relative performance of SO solvers. Such experiments are important for a number of reasons.
First, they can help with the development of new solvers by providing a testbed of problems
and by helping identify good choices of a solver’s parameters through calibration over a set
of problems. Second, they can help determine which solvers are effective when run with
practically relevant computational budgets, where a solver can be viewed as effective when
it solves problems rapidly and reliably. Third, they can help identify problems, or classes of
problems, that are relatively easy to solve or that defy efficient solution with existing solvers,
thereby motivating further solver development while ensuring that research effort remains
focused on more challenging problems. They can likewise provide insight into the structural
properties of problems, such as convexity and/or pathwise smoothness, that are especially
well or poorly handled by a solver or class of solvers.

Testbeds have been of great value to research communities outside of SO [Gould et al.,
2015, Ali et al., 2005, Netlib, 2021, Wikipedia, 2021]. Compared to these other communi-
ties, the SO research community lags in the development of testbeds, but there has been
recent progress. SimOpt is a library of simulation-optimization problems and solvers that is
undergoing a redesign. See Pasupathy and Henderson [2006, 2011], Dong et al. [2017] and
Eckman et al. [2019] for background and recent developments and Eckman et al. [2020] for
the library itself.

In parallel with the development and collection of problems and solvers, one also needs
metrics for evaluating and comparing solver performance. This paper focuses on the develop-
ment of such metrics and methods for estimating them. In doing so, we attempt to capitalize
on related metrics developed in other optimization communities, namely, performance pro-
files [Dolan and Moré, 2002, Gould and Scott, 2016, Ali et al., 2005], data profiles [Moré
and Wild, 2009], accuracy profiles [Beiranvand et al., 2017] and log-ratio profiles [Morales,
2002, Shi et al., 2021]. There are special aspects of SO that prevent direct translation of
the aforementioned metrics. For example, the fact that we cannot exactly (to numerical

2

precision) evaluate an objective function, and instead must estimate it through stochastic
simulation, means that we can never be certain that one solution is better than another,
nor that a solution is close in objective function value to an optimal solution. Still, we can
strive to make assertions with high confidence by controlling sample sizes and dependence
structures through judicious use of common random numbers. In general, the estimation
issues present in developing metrics and associated estimators are nontrivial.

We view the primary contributions of this paper to be the following:

� We identify important characteristics of solver performance and ways to measure them.

� We recommend an experimental design that accommodates many SO solvers. The
design typically requires the use of two-level simulation, and we exploit that literature
to inform the experimental design.

� We develop a variety of metrics and clarify their uses in evaluating one or more solvers
on one or more problems, namely, progress curves, scatter plots, solvability profiles
and difference profiles. The proposed metrics do not align perfectly with metrics that
are used in testbeds for deterministic-optimization methods; we explain what is unique
about SO to justify our choices of metrics. Progress curves and solvability profiles are
related to plots used in other research fields, e.g., convergence plots and data profiles,
while scatter plots and difference profiles are new.

� We explore the use of common random numbers (CRN) to improve various estimators.

� We describe a bootstrapping approach for assessing the estimation error in our esti-
mated metrics.

Our experimental setup is readily implemented and has been fully implemented in SimOpt
[Eckman et al., 2020].

This paper is organized as follows. Section 2 describes characteristics of SO problems and
solvers in more detail and explains the need for so-called macroreplications and postreplica-
tions. Section 3 introduces progress curves as a starting point for measuring solver perfor-
mance on a single problem on a single macroreplication. We describe two ways to aggregate
these curves over multiple macroreplications, expanding on ideas sketched out in Pasupathy
and Henderson [2006], and discuss estimators for such aggregate progress curves. These es-
timators use two-level simulation, wherein macroreplications constitute the outer level and
postreplications constitute the inner. Section 4 explores the use of the area under progress
curves to efficiently summarize the performance of multiple solvers on multiple problems,
also providing estimators. Section 5 proposes solvability profiles, which are closely related to
data profiles as originally proposed in Moré and Wild [2009]. Solvability profiles are based on
the (random) time required to approximately solve a problem, as opposed to progress curves
which are based on the (random) improvement in objective function value as a function of
time. Solvability profiles, as well as their differences, which we call difference profiles, allow a
succinct comparison of the performance of multiple solvers on multiple problems. Section 6
provides examples of the comparative plots we advocate. Section 7 develops recommenda-
tions for how CRN should be employed, appealing to the literature on two-level simulation.
We conclude in Section 8. The appendix provides the proof of a result given in Section 7 and

3

describes in more detail our use of bootstrapping to assess estimation errors in the various
metrics.

2 Problems, Solvers and Experimental Design

It is natural to use a testbed of SO problems to evaluate and compare SO solvers. In doing
so, we would like to exploit the literature on the use of testbeds in related areas, such as in
linear programming and stochastic linear programming. SO problems and solvers, however,
possess unique features that we must consider. For instance, a linear program in standard
form can be fully specified by a vector of objective function coefficients, a constraint matrix
and a vector of constraint right-hand-side values. Such a succinct description allows one
to readily describe problems and to write code to generate random problem instances. We
find ourselves somewhat envious of this relative simplicity when we contemplate specifying
SO problems. To do so, one must describe a mechanism through which sample paths can
be constructed (e.g., a stochastic simulation model) and precisely define the performance
measures.

Given this complexity, it is very tempting to instead use “synthetic” SO problems where
one takes a deterministic-optimization problem for which the objective and any constraints
are specified using closed-form formulae and “corrupts” the problem by adding mean-zero
stochastic noise. For example, one might add mean-zero Gaussian noise to the Rosenbrock
function [Rosenbrock, 1960]. From a testing standpoint, this offers several advantages:

� The optimal solution is the same as that of the original deterministic problem, which
is often known.

� Simulation replications (i.e., function evaluations) are computationally inexpensive.

� Many high-dimensional, deterministic optimization problems are devised for testing.

� Such objective functions typically have known structure.

The main disadvantage of this approach is that (solution-dependent) variances, gradient es-
timators and effects of CRN are all highly artificial. For example, a perfect instantiation of
CRN—where the same additive stochastic error is applied at all feasible solutions—yields
sample-path functions which resemble the original deterministic function, just shifted verti-
cally by a common offset. Thus, a deterministic-optimization solver that ignores the stochas-
tic nature of the problem should perform very well, although it might struggle on general
SO problems. Related issues arise if one uses a multiplicative scaling by a strictly positive
stochastic process with mean 1. We believe synthetic problems are problematic when it
comes to comparing SO solvers and do not consider them further.

In this paper we consider optimization problems of the form min f(x) subject to x ∈ D,
where D is a domain. We assume that f is estimated through stochastic simulation, and
for simplicity we assume that determining whether a point x lies in the domain D does not
require simulation, i.e., simulation is needed only in estimating f . This setup excludes the
case where constraints of the form g(x) ≥ 0 must be satisfied, where g(x) is estimated by
simulation. Such problems do arise in practice, but we do not yet have a recommendation on

4

performance metrics for them. Hence we consider solvers for single-objective optimization
without stochastic constraints.

Our framework fixes a budget for each problem in terms of simulation replications, within
which solvers must operate. Accordingly, we exclude fixed-confidence solvers with random
running times, such as many ranking-and-selection algorithms that provide frequentist statis-
tical guarantees. Our framework encompasses a diversity of algorithms, including gradient-
descent, trust-region and direct-search methods, and evolutionary algorithms, which track
populations of solutions, but it is not completely general.

Simulation optimization gives rise to multiple sources of randomness. Function estimates
obtained from simulation oracles are random, and some solvers, such as genetic algorithms,
are intrinsically random. Therefore, a single run of a solver on a problem cannot yield a
complete sense of the solver’s potential performance. Consequently, we conduct multiple
macroreplications, where a macroreplication is a single run of a solver on a problem that
proceeds until a budget on the number of simulation replications is exhausted. Macrorepli-
cations collectively give a sense of the variable performance of a solver on a problem and
are central to how we evaluate solvers. (However, macroreplications are not essential when
solving an SO problem in practice.)

On each macroreplication, a solver uses estimates of objective function values to guide a
search for better solutions. Such a search is biased towards solutions whose estimated objec-
tive function value is lower (for minimization problems) than the true value due to random
sampling [Mak et al., 1999]. This phenomenon is sometimes known as optimization bias,
and it means that the estimated objective function value at an estimated optimal solution is
biased low. Accordingly, whenever we want to obtain unbiased estimators of the progress of
SO solvers, we use a fresh set of simulation replications, which we term postreplications, that
are independent of those used in the macroreplications. Postreplications entail estimating
objective function values and thus are conceptually simpler than macroreplications, which
involve the interaction between a solver and a problem.

Our experimental design thus has two levels: we conduct multiple macroreplications of
each solver on a given problem and obtain postreplications in a post-processing stage. The
distributional information we obtain from multiple macroreplications and postreplications
then needs to be summarized in some fashion. Our experimental setup will be made more
mathematically precise in Section 3.

3 Progress Curves

Consider evaluating the performance of a single solver on a single problem. In deterministic
optimization, a common measure of performance is the time or number of function evalu-
ations needed to find an optimal solution, or a solution with objective value within some
tolerance of the optimum. This form of evaluation does not easily translate to SO for the
following reasons:

� Optimal solutions to SO problems are usually not known.

� In linear programming, for example, one can determine whether a given solution is
optimal through a certificate of optimality, e.g., complementary slackness conditions,

5

without needing to know an optimal solution in advance. Such certificates are rare
in SO problems, so even if an optimal solution were visited, usually it could not be
identified as optimal.

� Suppose that an optimal solution x∗ is known for an SO problem, and we want to
check whether a candidate solution, x, has an objective function value, f(x), within
some given tolerance, ϵ, of f(x∗). This determination is subject to stochastic error in
the estimator fN(x)− fN(x

∗) obtained by simulating N replications at each solution.

� The simulation error can be reduced by increasing the number of replications simulated
at a solution, but this comes at a computational cost. This is not typically a feature
of the deterministic-optimization setting.

We advocate fixing a problem-specific budget of simulation replications and tracking
the solution that the solver would recommend as the best—as a function of the number of
simulation replications used in the search—until the budget is expended. We measure com-
putational effort in terms of simulation replications, partly because this metric is somewhat
universal across computing architectures. Importantly, we do not measure effort in terms of
iterations, since the number of replications per iteration can change as the search proceeds.
The recommended solution would typically be the one that has the best estimated objective
function value amongst those simulated thus far, but not always; e.g., with Polyak-Ruppert
averaging one recommends the average of all solutions visited, which itself may not have been
visited. Our approach has a number of strengths that we will discuss shortly, but like any
approach it has shortcomings. First, the recommended solution at an intermediate budget
may not be easily defined for some solvers. For example, many ranking-and-selection algo-
rithms are designed to run until a stopping condition is met, at which point they terminate
and propose a solution as optimal. Such algorithms do not typically offer an intermediate
recommended solution. On a related note, for solvers that use parallel computation to simul-
taneously simulate solutions, the point at which a certain intermediate budget of simulation
replications has been expended is not well defined, since it depends on the scheduling of
processors. Second, some solvers use the budget when specifying parameters that control,
for example, an exploration-versus-exploitation tradeoff. The quality of an intermediate rec-
ommended solution will therefore not necessarily reflect how well the same solver would do
if given a smaller or larger budget.

For a given problem, let T be the computational budget—as measured in simulation
replications—and let X(t) be the recommended solution after a fraction t ∈ [0, 1] of the
budget has been expended. In a slight abuse of language, we refer to t as “time.” For a
fixed t, the recommended solution X(t) is random, depending as it does on the outputs
of the simulation replications and their influence on the solver’s progress. Solvers may also
deliberately inject additional randomness into this process, as with, e.g., genetic algorithms or
random-search algorithms. Collectively, the solutions recommended throughout the budget
are described by the stochastic process X := {X(t) : t ∈ [0, 1]}. Although the recommended
solution can change at only discrete times t = 0, 1/T, 2/T, . . . , 1, we find it mathematically
convenient to represent X as a continuous-time stochastic process.

We are especially interested in the stochastic process f(X) := {f(X(t)) : t ∈ [0, 1]}
where the random variable f(X(t)) is the true objective function value of the random recom-

6

mended solution X(t) obtained on a generic macroreplication. The process f(X) describes
the solver’s progress in identifying better solutions over time and, for a given realization,
i.e., macroreplication, can be plotted over time. The deterministic analog of this plotted
function is widely used in the deterministic-optimization community to study convergence
and compare solvers on a given problem [Beiranvand et al., 2017]. Such plots also frequently
appear in the SO literature.

We find it useful to rescale (standardize) the plot of f(X), especially when we want to
summarize a solver’s performance over multiple problems, as we do in Sections 4 and 5. To
that end, we rescale the vertical axis to represent the relative optimality gap, which we define
as the proportion of the initial optimality gap that has yet to be eliminated. Related scalings
have been used when reporting results for deterministic solvers on deterministic-optimization
problems; see, e.g., Moré and Wild [2009].

To that end, let x0 denote a fixed initial solution and let x∗ denote a fixed optimal solution.
As previously mentioned, usually we do not know the optimal solution to a given simulation-
optimization problem; however, in our analysis, we treat x∗ as fixed, acknowledging that this
creates an imperfection when x∗ is in fact estimated from the same macroreplications we are
analyzing. Henceforth, we let x∗ represent an optimizer, or its proxy, and ignore variability
in that term; our analysis is therefore conditional on x∗.

Remark: In our presentation, the initial solution x0 is assumed to be common across
all macroreplications of a solver on a given problem. As a result, all of the variability
observed in the quality of the random solution recommended at a given time, i.e., f(X(t)),
can be attributed to the simulation error in evaluating f(·), any internal randomness in the
solver and their effects on the solver’s behavior. While varying x0 from macroreplication
to macroreplication would indicate how robust the solver is to starting from different initial
solutions, it would also lead to different rescalings of f(X(t)) for different macroreplications.
For simplicity, we fix x0 across macroreplications, but point out that different initial solutions
on the same problem could be treated as distinct problems [Wild, 2019].

Let f(x0) and f(x∗) denote the objective function values at x0 and x∗, respectively. In
the typical situation where an optimal solution is unknown, we can replace f(x∗) with an
estimate from the results of previous experiments, perhaps using a different solver on the
same problem, or with a bound—a lower bound in the case of minimization problems or an
upper bound in the case of maximization problems. We make several assumptions about the
objective function values at x0, x

∗ and elsewhere:

A1 f(x) is bounded above and below and attains its optimal value at x∗.

A2 f(x0) ̸= f(x∗), i.e., the search does not start at an optimal solution.

To standardize the plot of f(X), we offset f(X(t)) by the optimal objective function
value, f(x∗), and divide by the initial optimality gap, f(x0)− f(x∗). We denote the rescaled
stochastic process by ν = {ν(t) : t ∈ [0, 1]} where

ν(t) :=
f(X(t))− f(x∗)

f(x0)− f(x∗)
,

and refer to ν as the progress curve. The value of the progress curve at a time t ∈ [0, 1]
is a random variable giving the ratio of the optimality gap at time t to the optimality gap

7

at time 0. Under Assumptions A1 and A2, ν(t) is finite for all t ∈ [0, 1]. For minimization
problems, we expect that with high probability f(x0) ≥ f(X(t)) ≥ f(x∗) for all t ∈ [0, 1], so
that ν(t) ∈ [0, 1]. On the other hand, for maximization problems we expect that with high
probability f(x0) ≤ f(X(t)) ≤ f(x∗), so that both numerator and denominator are negative
and again ν(t) ∈ [0, 1]. In either case, a solver that recommends better quality solutions
over time will have ν(t) decrease towards 0 as t increases. However, ν(t) could take values
above 1 if the corresponding recommended solution X(t) is worse than the initial solution x0.
Likewise, ν(t) could take values below 0 if X(t) is infeasible in a constrained optimization
problem. Though not mathematically precise, we find it convenient to presume that ν(t)
takes only values between 0 and 1 when making general statements about the progress curve
and functionals thereof.

Remark: The plot of ν depends heavily on the choice of the budget, T . If T is very
small, a solver will not make much progress toward finding x∗ and ν(t) will hover near 1.
If T is very large, then a solver will have conceivably made substantial progress towards an
optimal solution relatively early and then remained near such an optimizer for the remaining
time, in which case ν(t) will quickly drop to 0 and remain there. When comparing multiple
solvers, the choice of the budget can favor slow-and-steady solvers (by increasing T) or rapid
solvers (by decreasing T). Thus, care needs to be exercised in selecting T . The budget
should ideally be large enough that most solvers have a chance to stabilize, yet also small
enough that differences in solvers’ finite-time performance can be detected. We advocate
setting it equal to the effort used by the best-performing solver to get “close” to an optimal
solution. This recommendation is imprecise; we believe necessarily so.

Remark: Since the optimal solution to a simulation-optimization problem is often un-
known, the reference solution x∗ may be estimated from running one or more solvers on the
problem and may therefore indirectly depend on T . We ignore this dependence.

The progress curve, ν, is the principal random object by which we measure a solver’s
performance subject to a computational budget. By running multiple i.i.d. macroreplications
of the solver and plotting the corresponding realizations of ν, one can visualize the run-to-
run variability in a solver’s progress over time on a given problem. The distribution of these
random progress curves offers a wealth of information on different aspects of the solver’s
behavior. For instance, the distribution of ν(t) for any fixed t gives a sense of the reliability
of the solver, e.g., how consistently it recommends high-quality solutions at an intermediate
budget. Alternatively, the distribution of the first time at which ν(t) drops below some
fixed threshold α ∈ [0, 1] indicates how much time it takes the solver to reduce the relative
optimality gap to α. We build upon these different perspectives to devise summary statistics
for a solver’s performance on one or more problems.

3.1 Aggregate Progress Curves

When extending to multiple solvers, simultaneously plotting multiple realizations of ν for
all solvers quickly becomes too cluttered, making it hard to draw clear conclusions. For this
reason, we explore ways to aggregate or summarize aspects of ν. Different manipulations of
ν lead to valuable insights into the average progress, rate of progress (e.g., convergence) and
run-to-run reliability of a solver on a given problem. In Sections 4 and 5, we extend these
ideas to enable comparisons of multiple solvers on a set of problems. Collectively, these ideas

8

can be framed as instances of stochastic functionals: functions that take as input a stochastic
process on the interval [0, 1] and output either a scalar or a deterministic function on the
interval [0, 1]. Examples of the former include the expected area under ν and the expected
time at which ν first drops below some value α ∈ [0, 1], while examples of the latter include
the mean, median and quantile of ν(t) as functions of t.

Studying the distribution of the stochastic process ν at a fixed time or at a fixed remain-
ing optimality gap α offers interesting connections to other methods for evaluating solver
performance. For instance, fixing a remaining optimality gap and plotting the distribution
of the time at which the solver attains that level of improvement is reminiscent of data pro-
files [Beiranvand et al., 2017]. Similarly, fixing a time and plotting the distribution of the
remaining optimality gap closely resembles a rescaled accuracy profile [Beiranvand et al.,
2017]. However, data profiles and accuracy profiles were originally developed for compar-
ing deterministic-optimization solvers in which the “distribution” in question comes from a
solver’s performance on a fixed set of problems.

We are interested in both the typical behavior and tail behavior of ν(t) for each t ∈ [0, 1],
which is a lot of information to summarize. To do so, we introduce aggregate progress curves
and present their estimated counterparts in Section 3.2. As we use the term, an aggregate
progress curve plots some summary measure, e.g., the mean, median or some other quantile
of ν(t) as a function of t. The mean or median is frequently reported; see, e.g., Dong et al.
[2017]. Selected quantiles provide some indication of the variability in a solver’s performance
across macroreplications. The mean also provides useful information, averaging as it does
across macroreplications. The mean could be especially affected by macroreplications with
very poor performance, so the mean is best viewed as summarizing some combination of
“typical” and “especially poor or strong” behavior.

The mean progress at time t ∈ [0, 1], i.e., after a fraction t of the budget has been
expended, is defined as µ(t) := Eν(t), where the expectation is over X(t), the random
solution recommended at time t starting from the (deterministic) initial solution x0.

For a fixed β ∈ (0, 1), the β-quantile progress at time t ∈ [0, 1] is defined as χβ(t) :=
inf {q : Pr{ν(t) ≤ q} ≥ β}. Different choices of β accommodate a user’s interest in a solver’s
median performance (β = 0.5) or tail performance in the direction of strong (e.g., β = 0.05)
or poor (e.g., β = 0.95) performance. (Where no confusion can arise, we suppress β in this
notation.) The mean and β-quantile progress will generally take values between 0 and 1 for
all t ∈ [0, 1], though it is possible for them to takes values outside of this interval.

To estimate the mean and β-quantile progress, we can obtainM i.i.d. macroreplications of
the solver on the given problem, each yielding a sequence of recommended solutions Xm :=
{Xm(t) : t ∈ [0, 1]} for m = 1, 2, . . . ,M . Throughout this paper, a subscript m indicates
a quantity associated with macroreplication m; e.g., νm is the progress curve realized on
macroreplication m. For problems in which we can exactly (to numerical precision) compute
f(·), the mean progress at time t ∈ [0, 1] can be estimated by averaging the progress from
each macroreplication:

µ(t;M) :=
1

M

M∑
m=1

νm(t) =
1

M

M∑
m=1

f(Xm(t))− f(x∗)

f(x0)− f(x∗)
.

The β-quantile progress at time t ∈ [0, 1] can likewise be estimated by taking the sample β

9

quantile, i.e., the ⌈Mβ⌉th smallest value in the list of the progress values ν1(t), ν2(t), . . . , νM(t):

χ(t;M) := inf

{
q :

1

M

M∑
m=1

I(νm(t) ≤ q) ≥ β

}
.

Remark: The choice of M affects the precision of the estimators µ(t;M) and χ(t;M)
for any t ∈ [0, 1]. Specifically, in aggregating the progress curves ν1,ν2, . . . ,νM , an outlier
progress curve can significantly shift the aggregated estimates when M is small. Hence,
it is important to understand how many macroreplications suffice to get reasonably precise
estimates of µ(t) and χ(t). Understanding the error associated with estimating µ(t) and χ(t)
by µ(t;M) and χ(t;M), respectively, is worthwhile, yet we defer our discussion until the end
of Section 3.2 where we consider a two-level simulation setting. To obtain precise estimators,
we may need a different M for each problem-solver pair; for simplicity, we instead choose a
single common value for M .

3.2 Estimated (Aggregate) Progress Curves

Typically we cannot exactly compute f(·) and must resort to estimating the progress curve
for a given realization ofX via simulation. This setting is an instance of two-level simulation:
in an outer level we obtain i.i.d. macroreplications to estimate the distribution of ν, and in
an inner level we obtain replications from the simulation model to estimate f(X(t)) for a
given t and realization of X(t). To be precise, a macroreplication of the solver produces
a realization of X and we then obtain N postreplications at each solution recommended
throughout the budget. For a fixed time t ∈ [0, 1] and postreplication index n = 1, 2, . . . , N ,
let Yn(t) denote the corresponding noisy observation of the objective function value f(X(t)).
The observations Y1(t), Y2(t), . . . , YN(t) are importantly not function evaluations taken by
the solver during the macroreplication that produced X(t), as these would likely yield an
optimistic estimator of f(X(t)) due to optimization bias, as explored in, e.g., Mak et al.
[1999]. Instead, the N postreplications, are assumed to be conditionally independent of one
another and of the estimated function values obtained in the course of the macroreplications,
conditional on the sequence of recommended solutions, X.

As a default, we assume that CRN are used to evaluate the solutions recommended at
different intermediate budgets on a given macroreplication; thus, for each n = 1, 2, . . . , N ,
Yn := {Yn(t) : t ∈ [0, 1]} is a piecewise-constant function with breakpoints corresponding to
times at which the recommended solution changes. This use of CRN is intended to produce
stable estimated progress curves while reducing redundant simulation of a solution that is
possibly recommended multiple times on a given macroreplication; although X is modeled
as a continuous-time stochastic process, Yn can easily be obtained by using the same random
primitives to simulate each distinct solution in X, as output by the solver.

In a similar manner, we obtain L postreplications at solutions x0 and x∗, and for each
postreplication index l = 1, 2, . . . , L, we let Y0l and Y∗l denote the corresponding noisy
observations. Here too, we assume that CRN are used to evaluate x0 and x∗. We allow L to
differ from N because estimates of f(x0) and f(x∗) are needed for all times t at which we
estimate ν(t). We thus expect to use a greater runlength, L, for these common terms than
the standard postreplication runlength, N . Moreover, we foresee using the same estimates

10

of f(x0) and f(x∗) to construct the estimated progress curves from other macroreplications
of the same solver.

We use the shorthand notation fN(·) and fL(·) to denote the sample averages of N and
L i.i.d. postreplications, respectively, i.e.,

fN(X(t)) :=
1

N

N∑
n=1

Yn(t) for t ∈ [0, 1], fL(x0) :=
1

L

L∑
l=1

Y0l, and fL(x
∗) :=

1

L

L∑
l=1

Y∗l.

Based on the postreplications, the estimated progress at time t ∈ [0, 1] is defined as

ν(t;L,N) :=
fN(X(t))− fL(x

∗)

fL(x0)− fL(x∗)
.

We adopt the convention that the solver recommends the initial solution x0 at time t = 0.
Hence we set ν(0;L,N) = 1, even though fN(x0) almost certainly will not equal fL(x0).

For this setting in which f(·) must be estimated from simulation postreplications, the
mean and β-quantile progress curves can be estimated by aggregating the estimated progress
curves from each of M i.i.d. macroreplications. Specifically, the estimated mean progress at
time t ∈ [0, 1] is

µ(t;L,M,N) :=
1

M

M∑
m=1

νm(t;L,N) =
1

M

M∑
m=1

fN(Xm(t))− fL(x
∗)

fL(x0)− fL(x∗)
,

where νm(t;L,N) is the estimated progress at time t from the mth macroreplication. Sim-
ilarly, the estimated β-quantile progress at time t ∈ [0, 1] is the sample β quantile of
ν1(t;L,N), ν2(t;L,N), . . . , νM(t;L,N), i.e.,

χ(t;L,M,N) := inf

{
q :

1

M

M∑
m=1

I(νm(t;L,N) ≤ q) ≥ β

}
.

At any given time t ∈ [0, 1], the estimated aggregate progress values µ(t;L,M,N) and
χ(t;L,M,N) are computed via two-level simulation.

At any given time t ∈ [0, 1] and macroreplication m, the estimated progress νm(t;L,N)
may take a negative value if the solution Xm(t) is misidentified as being better than x∗ due to
highly noisy function values and an insufficient number of postreplications. The statistical
error in the estimators µ(t;L,M,N) and χ(t;L,M,N) can be assessed in several ways.
Assuming finite second moments of Y1(t), Y01 and Y∗1, standard confidence-interval machinery
yields an interval estimator of µ(t) based on µ(t;L,M,N). Additional conditions are required
to establish the validity of corresponding interval estimators of χ(t) based on χ(t, L,M,N).
The analysis for both error estimators is discussed in Section 7, where we use Taylor’s
theorem and the literature of two-level simulation to assess the order of the error when CRN
are used not just at different times t, but (optionally) also across macroreplications. From
a practical standpoint, we prescribe a general bootstrapping approach that provides error
estimates for these metrics (and others); see Appendix B for a full description.

11

4 Area under Progress Curves

While aggregate progress curves summarize the typical and tail behavior of ν(t) for each
t ∈ [0, 1], they cannot be easily extended to help evaluate the performance of one or more
solvers on multiple problems. For this reason, we introduce metrics that each reduce a
collection of progress curves to a scalar rather than a function. The area under the progress
curve is given by the random variable

A :=

∫ 1

0

ν(t) dt =

∫ 1

0

f(X(t))− f(x∗)

f(x0)− f(x∗)
dt.

Provided a solver is unlikely to recommend solutions worse than x0 or better than x∗, A takes
values in [0, 1] with high probability. Our rescaling of f(X(t)) addresses several shortcomings
of a related metric proposed by Pasupathy and Henderson [2006]—the area under the curve
f(X).

The random variable A can be interpreted as the solver’s time-average relative optimality
gap over a fixed budget T on a given macroreplication. Smaller values of A indicate better
performance in the sense that the solver recommended better solutions on average throughout
a given macroreplication. Although the area under the progress curve summarizes a solver’s
time-average progress, it does not capture all aspects of a solver’s behavior given a fixed
budget. For example, two progress curves could have the same area under them but exhibit
very different solver behaviors, with one showing steady progress over time and the other
showing early rapid progress before plateauing. While imperfect, distributional properties
of A can be used for comparisons over multiple problems.

Let µA := EA and σA :=
√
VarA be the expectation and standard deviation of the area

under the progress curve. The quantities µA and σA measure the average and variability of
the time-average relative optimality gap, with smaller values indicating better average and
less-variable run-to-run performance, respectively. Under Assumptions A1 and A2, µA is
also the area under the mean progress curve:

µA = EA = E

[∫ 1

0

ν(t) dt

]
=

∫ 1

0

Eν(t) dt =

∫ 1

0

µ(t) dt.

The area under the mean progress curve, µA, combines the typical as well as especially poor
or strong behavior of ν(t) but otherwise offers limited information about the distribution of
ν(t). The standard deviation σA provides some information on variability. It does not mea-
sure the within-macroreplication variability of the objective function values across different
recommended solutions. Instead, it reflects the across-macroreplication variability in how a
solver’s sequence of recommended solutions evolves depending on the data it observes.

We can estimate µA and σA by obtaining M i.i.d. macroreplications of the solver and
calculating the sample mean and sample standard deviation of the areas under the realized
progress curves:

µA(M) :=
1

M

M∑
m=1

Am =
1

M

M∑
m=1

∫ 1

0

νm(t)dt, and σA(M) :=

√√√√ 1

M − 1

M∑
m=1

(Am − µA(M))2.

12

For the typical case in which f(·) must be estimated from postreplications, we can estimate
µA and σA from the realized estimated progress curves:

µA(L,M,N) :=
1

M

M∑
m=1

Am(L,N) =
1

M

M∑
m=1

∫ 1

0

νm(t;L,N) dt,

and

σA(L,M,N) :=

√√√√ 1

M − 1

M∑
m=1

(Am(L,N)− µA(L,M,N))2.

Let µp,s
A (L,M,N) and σp,s

A (L,M,N) denote the estimated mean and standard devia-
tion of the area under the progress curve for a given solver, s, and a given problem, p.
By our construction of the progress curves, µp,s

A (L,M,N) and σp,s
A (L,M,N) should take

values in the intervals [0, 1] and [0, 1/2], respectively, with high probability. The per-
formance of a solver s over a set of problems P can be depicted in a scatter plot of
{(µp,s

A (L,M,N), σp,s
A (L,M,N)) : p ∈ P}. Problems for which (µp

A(L,M,N), σp
A(L,M,N))

lies in the lower-left quadrant of [0, 1] × [0, 1/2] are those on which the solver makes rapid,
reliable progress. Comparing superimposed scatter plots for different solvers can give a rough
sense of their relative performance, though when comparing more than a handful of solvers,
it may be necessary to produce separate plots.

How sensitive are the metrics µp,s
A (L,M,N) and σp,s

A (L,M,N), and their relative ordering
across solvers s, to a problem’s budget, T? When x∗ is assumed to be fixed (and indepen-
dent of T), increasing T changes the horizontal scaling of the progress curve—compressing it
towards the left—while leaving the vertical scaling unchanged. As long as a solver proceeds
to recommend solutions with better objective function values than the previous time-average
on a given macroreplication m, increasing T will cause Am(L,N) to decrease. Consequently,
the sample mean µp,s

A (L,M,N) should decrease as T increases for solvers that continue to
make progress, or at least do no worse than the previous time-average, during the additional
time. The effect of T on σp,s

A (L,M,N) is more intricate. Roughly speaking, σA is related
to the variability in the height of the progress curve. For many solvers, we observe that the
inter-quartile ranges of f(X(t)) first increase as the different trajectories of a solver move
away from x0 and later decrease as they converge to x∗. (This is of course an oversimplifi-
cation: If different trajectories converge to different local optimal solutions, the variance of
f(X(t)) may remain high for large t.) Thus increasing the budget should typically introduce
extensions of the progress curves whose heights are less variable, translating to less variability
in the area under the curve, i.e., smaller values of σp,s

A (L,M,N), but this is not universally
the case. The choice of budget can also influence the appearance of the scatter plot due to
solver characteristics. For example, a scatter plot depicting two solvers will appear quite
different at different budgets T if one solver requires more setup than another but benefits
from that setup in the long run.

5 Solvability Profiles

Another way to compare solvers on multiple problems is through profiling. As we have
discussed, performance, data and accuracy profiles have been used extensively to compare

13

deterministic-optimization solvers. In this section, we explore related ideas for simulation
optimization, where the variable performance of a solver across macroreplications must also
be addressed. To introduce key ideas, we first consider a single problem-solver pair.

5.1 A Single Problem-Solver Pair

We previously defined the progress curve as a stochastic process ν = {ν(t) : t ∈ [0, 1]} where
ν(t) := (f(X(t))− f(x∗))/(f(x0)− f(x∗)) reports the optimality gap as a function of time.
Let τ(α) be the (random) time required to reduce the optimality gap to a fraction α ∈ [0, 1]
of its initial value, i.e.,

τ(α) := inf{t ∈ [0, 1] : ν(t) ≤ α} = inf{t ∈ [0, 1] : f(X(t))− f(x∗) ≤ α(f(x0)− f(x∗))},

where the second equality applies for a minimization problem. (A similar second equality
applies for a maximization problem.) We take the infimum of the empty set to be ∞, so
τ(α) takes values in [0, 1] ∪ {∞}. We refer to τ(α) as the progress curve α-solve time. The
corresponding stochastic process τ = {τ(α) : α ∈ [0, 1]} can be thought of as the inverse
of ν, though this is not exact since ν need not be monotone. This metric is another way,
besides the area under the progress curves, to reduce a solver’s performance from a function
of time to a scalar for easier solver comparisons.

The choice of α reflects a user’s preferred reduction in the initial optimality gap. Values
of α such as 0.5 or 0.3 reflect a relatively modest improvement, while values such as α = 0.05
represent a quite strict requirement. Where no confusion can arise, we fix α and suppress it
in the notation. As with the area under the progress curve, the budget T plays a significant
role in determining the solve time τ .

A plot of the cumulative distribution function of τ yields detailed information about how
rapidly and reliably a single solver α-solves a single problem. Summary statistics might be
useful, but since τ is extended-valued moments will typically be infinite. Instead, we look
at β-quantiles of τ defined as π = πβ := inf{q : Pr{τ ≤ q} ≥ β}. Assuming we can exactly
compute f , we can estimate π by the sample quantile over M macroreplications,

π(M) := inf

{
q :

1

M

M∑
m=1

I(τm ≤ q) ≥ β

}
,

where τm = inf{t ∈ [0, 1] : νm(t) ≤ α} is the α-solve time from the mth macroreplication. In
other words, π(M) is the smallest time at which at least a fraction β of the macroreplications
α-solve the problem. This quantity can also be extended-valued, particularly when α is small.
If f cannot be computed exactly, then we use two-level simulation:

π(L,M,N) := inf

{
q :

1

M

M∑
m=1

I(τm(L,N) ≤ q) ≥ β

}
,

where τm(L,N) = inf{t ∈ [0, 1] : νm(t;L,N) ≤ α} is the estimated α-solve time from the
mth macroreplication. Perhaps reasonable values of β are 0.5 or 0.9. The corresponding
estimators, denoted by π0.5(L,M,N) and π0.9(L,M,N), represent the median and “fairly
sure” fractions of the budget required to α-solve the problem, with 0.9 being the stricter
requirement. Bootstrapping can be used to provide error estimates for these estimators.

14

5.2 Multiple Solvers and Problems

Let τ p,s denote the α-solve time of solver s on problem p, given some fixed α ∈ [0, 1] and
problem-specific budget T p. Consider the average probability that solver s solves problem p
within a fraction t ∈ [0, 1] of its budget, averaged across a set of problems p ∈ P , i.e.,

ρs(t) :=
1

|P|
∑
p∈P

Pr {τ p,s ≤ t} .

We call ρs = {ρs(t) : t ∈ [0, 1]} the cdf-solvability profile of solver s. (Here “cdf” stands for
cumulative distribution function and reflects the fact that ρs is an average of the cdfs of τ p,s

over problems.) Notice that ρs(1) < 1 if solver s cannot solve all problems p ∈ P within
their budgets with probability one. Assuming we can compute f exactly, we can estimate
ρs(t) for t ∈ [0, 1] by the sample proportion from M i.i.d. macroreplications of solver s on
each problem p ∈ P :

ρs(t;M) :=
1

|P|
∑
p∈P

1

M

M∑
m=1

I (τ p,sm ≤ t) .

If we cannot compute f exactly, then the corresponding two-level estimator is

ρs(t;L,M,N) :=
1

|P|
∑
p∈P

1

M

M∑
m=1

I (τ p,sm (L,N) ≤ t) .

The cdf-solvability profile of a solver at time t ∈ [0, 1] gives the probability that a problem,
selected uniformly at random from P , is α-solved by time t on a single macroreplication of
the solver. A different form of solvability profile returns the fraction of problems in P that
a given solver α-solves by time t with probability exceeding β. More precisely, we define

ρsβ(t) :=
1

|P|
∑
p∈P

I (Pr{τ p,s ≤ t} ≥ β) =
1

|P|
∑
p∈P

I(πp,s
β ≤ t),

and call ρs
β = {ρsβ(t) : t ∈ [0, 1]} the β-quantile-α-solvability profile of solver s. Here, πp,s

β is
the β-quantile of the α-solve time τ p,s of solver s on problem p. For β = 0.9, for example,
ρsβ(t) gives the fraction of problems we are fairly sure solver s α-solves by time t. Natural
one-level and two-level estimators of ρsβ(t) are

ρsβ(t;M) :=
1

|P|
∑
p∈P

I(πp,s
β (M) ≤ t) and ρsβ(t;L,M,N) :=

1

|P|
∑
p∈P

I(πp,s
β (L,M,N) ≤ t),

respectively. Quantile-solvability profiles are perhaps more intuitive than cdf-solvability pro-
files since they depict a fraction of problems as opposed to a fraction of macroreplications.
They summarize the progress curves of problem-solver pairs based on quantiles at time t,
thereby diminishing the effect of macroreplications with particularly poor or strong perfor-
mance. Because quantile-solvability profiles are piecewise-constant and increasing in t with
jumps of size |P|−1, they are coarsely quantized for small problem sets and smoother for
larger problem sets.

15

Since ρs(t;M) and ρsβ(t;M) are bounded, their second moments are finite and hence we
can obtain a confidence interval for each t ∈ [0, 1] using asymptotic normality, bootstrapping
or other mechanisms for bounded random variables [Diouf and Dufour, 2005, Learned-Miller
and Thomas, 2019]. As for ρs(t;L,M,N) and ρsβ(t;L,M,N), one can construct confidence
intervals using the bootstrapping procedure outlined in Appendix B.

The (estimated) cdf- or quantile-solvability profiles for all solvers can be plotted on the
same graph, with higher curves indicating better performance on the set of problems. While
area-under-the-progress-curve scatter plots summarize the overall performance of solvers
for different problems, solvability profiles provide comparisons of the solvers’ performance
at different times, aggregated over all problems. As a result, solvability profiles provide
insight about the rate of progress for different solvers. For example, one can contrast the
performance of solvers at a range of budgets. Furthermore, one can compare multiple solvers
on a single problem but with different initial solutions, treating each initial solution as a
distinct problem.

5.3 Difference Profiles

So far we have discussed how to compute solvability profiles for each solver in a set of solvers,
S. However, when comparing any two solvers, sharper comparisons can be obtained through
paired differences. As we shall see, a difference plot shows how the performance of each
solver compares to that of a fixed benchmark solver, s0. The benchmark solver s0 could be
one that has exhibited robust performance across a range of problems, such as the Nelder-
Mead algorithm as tested in Dong et al. [2017], or it could be a newly proposed solver. The
benchmark solver can also be used to determine a reasonable budget for each problem p ∈ P
by running s0 until an acceptable optimality gap in the problem is achieved.

For Solver s, define
δs(t) := ρs(t)− ρs0(t) for t ∈ [0, 1],

the difference between the cdf-solvability profiles of solvers s and s0 at time t. The quantity
δs(t) is deterministic and ranges between −1 and 1. It is also known as the continuously
ranked probability score [Matheson and Winkler, 1976]. We define the cdf-solvability dif-
ference profile, henceforth cdf-difference profile, of solver s as δs = {δs(t) : t ∈ [0, 1]}. The
cdf-difference profile represents the difference between the probabilities of solvers s and
s0 solving a problem chosen uniformly at random from P within a fraction t ∈ [0, 1] of
its associated budget. An analogous definition yields the β-quantile-α-solvability difference
profile or, in short, quantile-difference profile of solver s: δs

β = {δsβ(t) : t ∈ [0, 1]} where
δsβ(t) := ρsβ(t)− ρs0β (t) for t ∈ [0, 1].

If f can be computed exactly, we can estimate δs(t) and δsβ(t) from M i.i.d. macroreplica-
tions by δs(t;M) := ρs(t;M)− ρs0(t;M) and δsβ(t;M) := ρsβ(t;M)− ρs0β (t;M), respectively.
When f cannot be computed exactly, the corresponding two-level estimators are given by
δs(t;L,M,N) := ρs(t;M)− ρs0(t;M) and δsβ(t;L,M,N) := ρsβ(t;M)− ρs0β (t;M).

The ordering of solvers in difference profiles is the same as that of the solvability profiles,
but comparisons with the benchmark s0 are accentuated. Moreover, difference profiles can
take advantage of CRN, much as one can use paired-difference estimators to estimate a
difference of means in classical statistics. Difference profiles for multiple solvers can be

16

exhibited in a single plot by pairing all solvers against a benchmark solver s0. In such a
plot, solver s overperforms (underperforms) solver s0 at a time t ∈ [0, 1] if the difference
profile lies above (below) zero at time t. Pointwise confidence intervals can be constructed
via bootstrapping or other methods mentioned in the previous section.

6 Examples

We present examples of the aforementioned plots for an experiment conducted with problems
and solvers from the SimOpt testbed [Eckman et al., 2020]. Our problem set consists of 25
instances of SSCONT-1—an (s, S) inventory problem with continuous demand and order
quantities. Under an (s, S) inventory policy, when the on-hand inventory position drops
to s (or below), an order is placed to bring the inventory position up to S. To avoid a
notational clash where we denote solvers by s, we denote the “little s” in such inventory
problems by y. The demand in each period is assumed to be exponentially distributed with
mean µD, independent across periods, and the order lead time is assumed to be Poisson
distributed with mean µL, also independent across periods. (A lead time of zero corresponds
to receiving the ordered quantity at the start of the following period). The objective is to
select the thresholds y and S to minimize the expected per-period total cost—the sum of
back-order, order and holding costs. The back-order cost per unit is $4, the holding cost
per unit per period is $1, the fixed order cost is $36 and the variable order cost per unit
is $2. The system starts with an initial inventory of y at time 0 and is simulated for a
total of 120 periods with the first 20 periods treated as warm-up. The 25 problem instances
comprise all combinations of µD ∈ {25, 50, 100, 200, 400} and µL ∈ {1, 3, 6, 9, 12}. These
values are chosen to span a range of signal-to-noise ratios; higher values of µD and µL result
in more variable inventory fluctuations, hence more variable costs. We re-parameterize the
problem and place non-negativity constraints on the two continuous decision variables: y
and Q := S − y.

We test two classes of solvers:

� Random Search randomly samples solutions from the feasible region—y and Q are each
drawn independently from an exponential distribution with a mean of 200 units—and
takes a fixed number of replications at each solution. New solutions are generated until
the budget is exhausted. We test three versions of Random Search with 10, 50 and
100 replications taken per solution.

� ASTRO-DF is a stochastic derivative-free trust-region method that uses adaptive sam-
pling at each visited solution [Shashaani et al., 2018].

All solvers are given a budget of T = 1000 replications for each problem instance with
equal warm-up and run-length periods. It would be more appropriate to use different warm-
up and run-length periods, as well as different numbers of postreplications, for those problem
instances that may be harder and noisier than others, but this setup suffices for our demon-
stration purposes. We runM = 10 macroreplications of each solver on each problem instance,
with all solvers starting from a common initial solution x0 = (y0, Q0) := (600, 600) on all
macroreplications. In a post-processing stage, we take N = 100 postreplications at all rec-
ommended solutions. For each problem instance, the proxy optimal solution, x∗, is taken to

17

(a) (b)

(c) (d)

Figure 1: Results for SSCONT-1with µD = 25 and µL = 1: estimated progress curves (1a),
mean progress curves (1b), 0.9-quantile progress curves (1c) and cdfs of 0.2-solve times (1d).

be the recommended solution with the best postreplicated estimate fN(·) over all macrorepli-
cations of all solvers. To normalize the progress curves, we take L = 200 postreplications at
x0 and x∗ for each problem instance.

We present plots from two problem instances: one with µD = 25 units and µL = 1 period
(Figure 1) and the other with µD = 400 units and µL = 6 periods (Figure 2). The confidence
intervals in these plots, constructed via bootstrapping, indicate the error in estimating solver
performance.

Figures (1a)–(1c) and (2a)–(2c) show how progress curves are useful for evaluating and
comparing solver performance on individual problems. Recall that progress curves depict
improvement relative to the initial optimality gap; hence all y-axes are, for the most part,
between zero and one. For the problem instance with µD = 25 and µL = 1, the objective
function estimates obtained during macroreplications are relatively precise and all solvers

18

(a) (b)

(c) (d)

Figure 2: Results for SSCONT-1with µD = 400 and µL = 25: estimated progress curves (2a),
mean progress curves (2b), 0.9-quantile progress curves (2c) and cdfs of 0.2-solve times (2d).

show reliable progress over time (Figure (1a)), with ASTRO-DF showing more reliable perfor-
mance than the others. For the problem instance with µD = 400 and µL = 6, the objective
function estimates are highly variable, particularly due to the high variance of the lead
time. Accordingly, the solvers’ performances are either more variable from macroreplication
to macroreplication or are consistently poor (Figure (2a)). On this more difficult problem
instance, the Random Search solvers appear to struggle more than ASTRO-DF, perhaps indi-
cating that the noise in the objective function estimates overwhelms the true differences in
the objectives, leading to highly random recommended solutions.

Figures (1b)–(1c) and (2b)–(2c) show the aggregate (mean and 0.9-quantile) progress
curves for all four solvers. These curves illuminate the average and variable performance of
different solvers over time and offer a clearer ordering of the solvers based on their empirical
performance.

19

Figure 3: Scatter plot of the mean and standard deviation of areas under estimated progress
curves for all problem instances.

Figures (1d) and (2d) offer a different perspective of the solvers’ performances on these
two problem instances. They depict the cdf of the α-solve times for α = 0.20, i.e., the first
times at which each solver recommends a solution within 20% of optimal (relative to the
original optimality gap) on any given macroreplication. Figure (1d) shows the same ranking
of solvers on the problem instance with µD = 25 units and µL = 1 period, while Figure (2d)
makes it apparent that the Random Search solvers never 0.2-solve the problem instance with
µD = 400 units and µL = 6 periods.

Next, we examine the tools we have proposed to compare solvers over a testbed of prob-
lems. Figure 3 is a scatter plot where the coordinates of each point provide the mean and
standard deviation of the areas under the estimated progress curves (over macroreplications)
for a given problem-solver pair. When the number of problem-solver pairs is small, it may
be beneficial to also show the bootstrapped confidence intervals of the estimated means and
standard deviations with horizontal and vertical bars, respectively; in this plot, we suppress
that information to avoid clutter. In the lower-left quadrant of the plot, which corresponds to
solvers making rapid, reliable progress, there appears to be a clear ordering among the solvers.
Performances are more scattered in the high-mean area, which corresponds to poor solver
performance, especially among the Random Search solvers. From inspecting the high-mean
area, it appears that ASTRO-DF struggles on only five problem instances. Random Search

10 performs mostly well, but there are a number of problems where it fails to make much
progress, as evidenced by points in the lower-right quadrant. Indeed, when solvers are unable

20

to solve a problem, the area under a progress curve is about 1 in most macroreplications,
leading to a high mean and low standard deviation of the area under the progress curves.
From this plot, Random Search 50 and Random Search 100 appear to be dominated by the
other two solvers.

(a) (b)

(c)
(d)

Figure 4: Profiles over all problem instances: cdf solvability profiles (4a), difference of cdf
solvability profiles (4b), quantile solvability profiles (4c) and difference of quantile solvability
profiles (4d).

Figures (4a) and (4c) show cdf- and quantile-solvability profiles of the four solvers over the
set of problem instances. The cdf-solvability profile pertains to the time required to reduce
the optimality gap (of any problem) to a tenth of its initial value on each macroreplication of
each problem instance. The quantile-solvability profiles are presented for the median perfor-
mance of solvers; these plots thereby discount the effect of extreme solve times encountered
on certain macroreplications. The right endpoints of the cdf- and quantile-solvability pro-
files show that our problem set includes some hard problems that all solvers fail to 0.1-solve

21

within the budget of 1000 replications. Random Search 10 is the fastest of the three Random
Search solvers to 0.1-solve the problems, which is to be expected since the cheaper sampling
of solutions allows Random Search 10 to visit better solutions sooner than Random Search

50 and Random Search 100. Random Search 10’s superior initial performance relative to
ASTRO-DF quickly disappears as the fraction of the budget increases and ASTRO-DF then dom-
inates. Unlike Random Search, the times at which ASTRO-DF identifies improved solutions do
not belong to a fixed set; this explains the relative smoothness of its cdf-solvability profile.

The difference profiles in Figures (4b) and (4d) depict the performance gaps between
ASTRO-DF and each variant of Random Search and further clarify the ordering of their per-
formance over the problem set. An advantage of the difference profiles is that they exploit
common random numbers, so we see statistically significant differences between the solvers.

7 Should we use Common Random Numbers in Postrepli-

cations?

The plots in Section 6 were obtained through prototype software that makes judicious and
automated use of CRN. The decision of where to use CRN is delicate; CRN can lead to
smoother plots due to the introduction of dependence in plot heights at different points, but
as we shall see herein, if not applied with care it can also be counterproductive. We focus
on whether CRN should be used across macroreplications in performing postreplications.
Using CRN in this fashion may be an appealing way to reduce any perceived difference in
performance from one macroreplication to another due to independent statistical noise. For
example, one might take this approach to attempt to better identify which of the recom-
mended solutions from the macroreplications is best. Ultimately, we will not recommend
using CRN in this manner because it slows down convergence rates of the estimators.

It is important to draw a distinction with our recommended use of CRN for evaluating
solutions encountered on a single macroreplication across different times. Doing so will
typically produce smoother estimated progress curves. The discussion here concerns coupling
the evaluations of solutions recommended on different macroreplications.

For simplicity, throughout this section we fix the time t and consider the pointwise error in
the estimated progress curves at that fixed time. Ideally we would consider multiple values of
t simultaneously, because we are interested in the entire aggregate progress curve. Neverthe-
less, the analysis for a fixed t suffices to make our point that CRN across macroreplications
is undesirable.

We consider two possible dependence structures in postreplications. In both cases we
allow the L postreplications at x0 and x∗ to be statistically dependent. The difference is
instead whether the postreplications at different recommended solutions across macrorepli-
cations are coupled through CRN.

Independence: Here we assume that the postreplications used to estimate f(Xi(t)) are
independent of those used to estimate f(Xj(t)) for i ̸= j, i.e., that the postreplications
used to evaluate recommended solutions from different macroreplications are mutually
independent. Moreover, we assume that the L postreplications used to estimate f(x0)
and f(x∗) are independent of those used to estimate f(Xj(t)), j = 1, 2, . . . ,M .

22

CRN: Here we assume that CRN are used in the postreplications to evaluate the solutions
from different macroreplications, so that fN(Xi(t)) and fN(Xj(t)) are dependent for i ̸=
j. For simplicity, we further assume that the L postreplications used to estimate f(x0)
and f(x∗) are independent of the N postreplications used to evaluate the recommended
solutions from different macroreplications.

Throughout this section, we take x∗, the optimal solution, to be deterministic and given.
In practice it will often need to be estimated. One might extend the ideas presented here
under some assumption about the behavior (as a function of L,M and N) of an estimator
of x∗ that replaces x∗, but such methodology will depend heavily on the nature of f and the
manner in which x∗ is estimated.

We shall, in some detail, analyze mean progress curves and discuss quantile progress
curves. This should make it clear that using CRN across macroreplications is not advisable.

7.1 Mean Progress Curves

How accurate is the estimator µ(t;L,M,N) of µ(t)? This question is important, not just
in providing some sense of accuracy when the plots are produced, but also in aiding in the
choice of L, M and N .

We state our observations in terms of an overall computational budget of simulation
replications used to run the entire experiment, including all macroreplications and postrepli-
cations. We denote this overall budget by c and assume, for simplicity, that the cost of
running a replication (likewise postreplication) is uniform in x. Thus, we regard L, M and
N as functions of c, which we assume are bounded below by 1 to avoid trivialities. We
first run M(c) macroreplications with some per-macroreplication cost (average number of
simulation replications) Tt and then complete the postreplications at cost 2L(c)+M(c)N(c)
replications, yielding the estimator µ(t;L,M,N). Thus, c = TtM(c) + 2L(c) +M(c)N(c).
(For simplicity we ignore rounding effects associated with the need for L,M and N to all be
integers.)

To proceed we require additional assumptions:

A3 Simulation replications at any solution x are unbiased, i.e., EY1(x) = f(x) for all x.

A4 Simulation replications at any solution x have bounded (in x) non-zero variance, i.e.,
σ2(x) := varY1(x) is positive and bounded in x.

The uniformity in Assumption A4 (and in A1 stated earlier) permits a transparent analysis,
which is restrictive but could be relaxed with effort. We do not pursue that effort because
the conclusion is clear as is. Assumption A3 could be relaxed, as might be needed in the
context of steady-state simulation, for example. We expect the conclusions of Theorem 1
to hold under relaxed assumptions, but establishing the result under such conditions would
require further effort with, we believe, no change to the overall conclusion.

For notational simplicity we suppress the dependence of L,M and N on c. We say that
a family of random variables X(c) is Op(h(c)) if the family {X(c)/h(c) : c ≥ c0} is tight for
some c0 > 0. The proof of the following result appears in Appendix A.

Theorem 1 Suppose that Assumptions A1–A4 hold.

23

1. Suppose in addition that min(L,M) → ∞ as c → ∞. In the Independence case
µ(t;L,M,N) → µ(t) in probability as c → ∞. In the CRN case the same conclusion
holds provided that, in addition, N → ∞ as c → ∞.

2. Consider the Independence case. If min(L,M) → ∞ as c → ∞ then

µ(t;L,M,N) = µ̃(t;L,M,N) +Op(L
−1 +M−1),

where the random variable µ̃(t;L,M,N) has mean µ(t) and variance

ς2(L,M,N) =
a1

MN
+

a2
M

+
a3
L
,

for appropriate constants a1, a2 and a3.

3. Consider the CRN case. If min(L,M,N) → ∞ as c → ∞, then

µ(t;L,M,N) = µ̂(t;L,M,N) +Op(L
−1 +M−1 +N−1),

where the random variable µ̂(t;L,M,N) has mean µ(t) and variance

κ2(L,M,N) =
a4
L

+
a5
M

+
a6
N
,

for appropriate constants a4, a5 and a6.

Part 1 of Theorem 1 is implied by Parts 2 and 3. Nevertheless, we separated that result
because it showcases the fact that for consistency we require the number of postreplications
to grow without bound in the CRN case, but not in the Independence case. The difference
between the two cases is further highlighted in Parts 2 and 3 of the theorem that provide rates
of convergence and allow a more precise comparison. Indeed, for given values of L,M and
N , c = TtM + MN + 2L, representing the total number of simulation replications, where
Tt ≫ 1 represents the number of simulation replications needed for a single macrorepli-
cation out to time Tt, MN is the number of postreplications at recommended solutions
X1(t), X2(t), . . . , XM(t) and L postreplications are spent at each of solutions x0 and x∗. For
large budgets c, in the Independence case, the variance of µ̃(t;L,M,N) is minimized by tak-
ing the number of macroreplications M to be linear in c, the number of postreplications L to
be linear in c and the number of postreplications N to be constant in c, as can be derived by
standard calculus arguments that relax the constraint that these quantities be integers. On
the other hand, in the CRN case, the number of postreplications N must increase without
bound. Given that the total number of simulation replications is at least MN , we conclude
that the convergence rate of the estimator µ(t;L,M,N) is necessarily slower in the CRN
case than in the Independence case.

The conclusion that in the Independence case the estimator µ(t;L,M,N) converges at the
canonical rate (asymptotic variance of order c−1) when L,M, and N are chosen appropriately
is in line with the observations in Sun et al. [2011] for two-level simulations. The purpose
of Theorem 1 is not to help identify optimal choices of the parameters L,M, and N , since
such choices will depend on parameters that are difficult to compute. Rather, we present

24

the result to draw forth the key conclusion that CRN will deteriorate the convergence rate
of the estimator relative to the Independence case.

One might be tempted to use Theorem 1 to develop confidence intervals on values of the
mean progress curve. Doing so would require developing estimators of the various constants
appearing in the result. It seems to be far more practical to use bootstrapping to obtain
error estimates, as discussed in Appendix B.

7.2 Quantile Progress Curves

The quantile progress estimator χ(t;L,M,N) can be analyzed using techniques similar to
those we used for µ(t;L,M,N). However, quantile estimation for two-level simulation poses
an additional challenge. Quantile estimators are analyzed in Lee [1998], Lee and Glynn
[2003] and Gordy and Juneja [2010], where asymptotic theory is developed in the case where
the number of postreplications N is the same at all macroreplication solutions. It is natural,
however, to not seek high accuracy in estimating the true objective function value of recom-
mended solutions with relative optimality gaps that are far from that of the true quantile
χβ(t). Gordy and Juneja [2010] and Broadie et al. [2011] exploit this observation, analyzing
estimators that carefully vary the second-level sample sizes, achieving a faster convergence
rate than the common-N estimator. Extensions are explored in Broadie et al. [2015] and
Hong et al. [2017]. In what follows, we adopt a common number of postreplications, N , for
all macroreplication solutions.

To rigorously state convergence results for χ(t;L,M,N), which is a quantile estimator
using two-level simulation, requires a great deal of associated notation and regularity as-
sumptions, as is clear from Lee [1998] and Gordy and Juneja [2010]. Accordingly, we choose
not to state such results, but rather indicate what one can expect in general in our setting,
given the results in the aforementioned literature.

Assume that we do not use CRN in the postreplications. First, in the case when the so-
lution space is discrete, the results in Lee and Glynn [2003] indicate that the mean-squared
error of the estimator χ(t;L,M,N) is typically minimized when the number of postreplica-
tions L is of order c, the number of macroreplications M is of order c and the number of
postreplications N is of order ln c, in which case the mean squared error is of order ln c/c.
This is slower than the canonical rate 1/c, but only by a logarithmic factor. Second, in
the case when the solution space is continuous, the mean-squared error of the estimator
χ(t;L,M,N) is typically minimized when the number of postreplications L is of order c2/3,
the number of macroreplications M is of order c2/3 and the number of postreplications N is
of order c1/3, in which case the mean squared error is of order c−2/3; see Section 3.1.2 of Lee
[1998].

Should we use CRN in the postreplications? In general, the answer is no, since that will
slow down the convergence rate of the estimator χ(t;L,M,N). To see why this is plausible,
note that the path to establishing the asymptotic mean-squared error of the quantile estima-
tor requires, first, the analysis of the empirical cdf of fN(X1), fN(X2), . . . , fN(XM), which
can be written as

F̂ (·;M,N) =
1

M

M∑
m=1

I(fN(Xm) ≤ ·).

25

Here the macroreplication solutions X1, X2, . . . , XM are independent, but we assume that
fN(x) and fN(x

′) are dependent for any solutions x and x′, consistent with the use of CRN.

In this case, the empirical cdf F̂ (·;M,N) is an average of dependent terms, and we expect
that these terms are positively correlated. Thus, the empirical cdf will have larger variance
than if the postreplications were independent, leading to slower convergence.

8 Conclusions

We have developed and demonstrated a range of plots for use in empirical evaluation of SO
solvers on a testbed of problems. Progress curves are closely related to curves that have
frequently been used to date, indicating the objective function value of the most recently
recommended solution as a function of time. They differ in the way they are scaled, with
the x-axis reflecting the fraction of the computational budget expended, and with the y-
axis reflecting the fraction of the initial optimality gap that remains. Progress curves and
closely related plots giving the cdf of the α-solve time for varying α provide a great deal
of information about the performance of a single solver operating on a single problem. Yet
these plots are less useful when one wishes to explore the performance of a solver on multiple
problems or to compare the performance of multiple solvers on multiple problems. Area
scatter plots and solvability profiles can prove useful in this more information-rich setting,
by providing a high-level view of overall performance.

We provided some examples of these plots that clarify both their nature and their useful-
ness. We believe these examples provide a “proof of concept” that demonstrates the potential
in such comparisons. The plots generated here were obtained using the very recently up-
graded SimOpt testbed [Eckman et al., 2020], which is now available for general use. The
new version of SimOpt was designed to be useful not just in the simulation optimization
setting we have explored here, but also in other settings such as in data farming [Eckman
et al., 2021]. Those design improvements will be reported elsewhere.

Acknowledgments

This work was supported in part by National Science Foundation grants TRIPODS+X DMS-
1839346 and CMMI-2035086.

References

M.Montaz Ali, Charoenchai Khompatraporn, and Zelda B. Zabinsky. A numerical evaluation
of several stochastic algorithms on selected continuous global optimization test problems.
Journal of Global Optimization, 31(4):635–672, 2005.

S. Andradóttir. An overview of simulation optimization via random search. In S. G. Hender-
son and B. L. Nelson, editors, Simulation, volume 13 of Handbooks in Operations Research
and Management Science, chapter 20, pages 617–631. Elsevier, North Holland, 2006.

26

S. Andradóttir. A review of random search methods. In Michael C. Fu, editor, Handbook
of Simulation Optimization, volume 216 of International Series in Operations Research &
Management Science, chapter 10, pages 277–292. Springer, New York, 2015.

Vahid Beiranvand, Warren Hare, and Yves Lucet. Best practices for comparing optimization
algorithms. Optimization and Engineering, 18(4):815–848, 2017.

M. Broadie, Y. Du, and C. C. Moallemi. Efficient risk estimation via nested sequential
simulation. Management Science, 57(6):1172–1194, 2011.

Mark Broadie, Yiping Du, and Ciamac C. Moallemi. Risk estimation via regression. Opera-
tions Research, 63(5):1077–1097, 2015.

Marie Chau and Michael C. Fu. An overview of stochastic approximation. In Michael C.
Fu, editor, Handbook of Simulation Optimization, volume 216 of International Series in
Operations Research & Management Science, chapter 6, pages 149–178. Springer, New
York, 2015.

Kyle Cooper, Susan R. Hunter, and Kalyani Nagaraj. Biobjective simulation optimization
on integer lattices using the epsilon-constraint method in retrospective approximation
framework. INFORMS Journal on Computing, 32(4):1080–1100, 2020.

Mame Astou Diouf and Jean Marie Dufour. Improved nonparametric inference for the mean
of a bounded random variable with application to poverty measures. Technical report,
Département de Sciences Économiques, Université de Montréal, 2005.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

Naijia Dong, David J. Eckman, Xueqi Zhao, Matthias Poloczek, and Shane G. Henderson.
Empirically comparing the finite-time performance of simulation-optimization algorithms.
In W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page,
editors, Proceedings of the 2017 Winter Simulation Conference, pages 2206–2217, Piscat-
away, New Jersey, 2017. Institute of Electrical and Electronics Engineers, Inc.

D. J. Eckman, S. G. Henderson, R. Pasupathy, and S. Shashaani. Simulation optimization
library. http://www.simopt.org, 2020. [Online; Accessed May 1, 2020].

David J. Eckman, Shane G. Henderson, and Raghu Pasupathy. Redesigning a testbed
of simulation-optimization problems and solvers for experimental comparisons. In
N. Mustafee, K.-H. G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-
J. Son, editors, Proceedings of the 2019 Winter Simulation Conference, pages 3457–3467,
Piscataway, New Jersey, 2019. Institute of Electrical and Electronics Engineers, Inc.

David J. Eckman, Sara Shashaani, and Susan M. Sanchez. Data farming for simulation
optimization. Working paper, 2021.

Bradley Efron. Nonparametric standard errors and confidence intervals. The Canadian
Journal of Statistics, 9(2):139–158, 1981.

27

M. C. Fu. Optimization for simulation: theory vs. practice. INFORMS Journal on Comput-
ing, 14(3):192–215, 2002.

Saeed Ghadimi and Guanghui Lan. Stochastic approximation methods and their finite-time
convergence properties. In Michael C. Fu, editor, Handbook of Simulation Optimization,
volume 216 of International Series in Operations Research & Management Science, chap-
ter 7, pages 179–206. Springer, New York, 2015.

P. W. Glynn. Additional perspectives on simulation for optimization. INFORMS Journal
on Computing, 14(3):220–222, 2002.

Michael B. Gordy and Sandeep Juneja. Nested simulation in portfolio risk measurement.
Management Science, 56(10):1833–1848, 2010.

Nicholas Gould and Jennifer Scott. A note on performance profiles for benchmarking soft-
ware. ACM Transactions on Mathematical Software (TOMS), 43(2):1–5, 2016.

Nicholas IM Gould, Dominique Orban, and Philippe L Toint. CUTEst: a constrained and
unconstrained testing environment with safe threads for mathematical optimization. Com-
putational Optimization and Applications, 60(3):545–557, 2015.

L. Jeff Hong, Sandeep Juneja, and Guangwu Liu. Kernel smoothing for nested estimation
with application to portfolio risk measurement. Operations Research, 65(3):657–673, 2017.

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications. Springer-Verlag, New York, 2nd edition, 2003.

Erik Learned-Miller and Philip S Thomas. A new confidence interval for the mean of a
bounded random variable. ArXiv e-prints, 2019. Preprint arXiv:1905.06208v2, http:
//arxiv.org/abs/1905.06208v2.

S. H. Lee. Monte Carlo Computation of Conditional Expectation Quantiles. PhD thesis,
Stanford University, Stanford, CA, 1998.

Shing-Hoi Lee and Peter W. Glynn. Computing the distribution function of a conditional ex-
pectation via Monte Carlo: Discrete conditioning spaces. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 13(3):238–258, July 2003.

Jialin Li and Ilya O. Ryzhov. Convergence rates of epsilon-greedy global optimization under
radial basis function interpolation. Working paper, 2020.

Wai Kei Mak, David P. Morton, and R. Kevin Wood. Monte Carlo bounding techniques for
determining solution quality in stochastic programs. Operations Research Letters, 24(1):
47–56, 1999.

James E Matheson and Robert L Winkler. Scoring rules for continuous probability distri-
butions. Management Science, 22(10):1087–1096, 1976.

José Luis Morales. A numerical study of limited memory BFGS methods. Applied Mathe-
matics Letters, 15(4):481–487, 2002.

28

Jorge J Moré and Stefan M Wild. Benchmarking derivative-free optimization algorithms.
SIAM Journal on Optimization, 20(1):172–191, 2009.

Netlib. Netlib. http://netlib.org, 2021. [Online; Accessed March 3, 2021].

Raghu Pasupathy and Shane G. Henderson. A testbed of simulation-optimization problems.
In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto,
editors, Proceedings of the 2006 Winter Simulation Conference, pages 255–263, Piscataway,
New Jersey, 2006. Institute of Electrical and Electronics Engineers, Inc.

Raghu Pasupathy and Shane G. Henderson. SimOpt: A library of simulation optimization
problems. In S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, editors,
Proceedings of the 2011 Winter Simulation Conference, pages 4075–4085, Piscataway, New
Jersey, 2011. Institute of Electrical and Electronics Engineers, Inc.

H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function.
The Computer Journal, 3(3):175–184, 1960.

Sara Shashaani, Fatemeh S Hashemi, and Raghu Pasupathy. ASTRO-DF: A class of adaptive
sampling trust-region algorithms for derivative-free stochastic optimization. SIAM Journal
on Optimization, 28(4):3145–3176, 2018.

Hao-Jun Michael Shi, Melody Qiming Xuan, Figen Oztoprak, and Jorge Nocedal. On the
numerical performance of derivative-free optimization methods based on finite-difference
approximations. ArXiv e-prints, 2021. Preprint arXiv:2102.09762, http://arxiv.org/
abs/arXiv:2102.09762v1.

Yunpeng Sun, Daniel W. Apley, and Jeremy Staum. Efficient nested simulation for estimating
the variance of a conditional expectation. Operations Research, 59(4):998–1007, 2011.

Wikipedia. Test functions for optimization. https://en.wikipedia.org/wiki/Test_

functions_for_optimization, 2021. [Online; Accessed March 3, 2021].

Stefan Wild. Personal communication with authors, October, 2019.

29

Appendices

A Proof of Theorem 1

Recall the definition of µ(t;L,M,N) as

µ(t;L,M,N) :=
1

M

M∑
m=1

νm(t;L,N) =

1
M

(∑M
m=1 fN(Xm(t))

)
− fL(x

∗)

fL(x0)− fL(x∗)
. (1)

LetR(L,M,N) be the numerator and S(L) be the denominator of (1) and let r = ER(L,M,N)
and s = ES(L) be their expected values. Then µ(t) = r/s = g(r, s), where the function
g(x, y) := x/y. To establish Part 1, i.e., consistency, it suffices to show that the numerator
and denominator of (1) each converge in probability. Each term in the denominator is simply
a sample average, so the law of large numbers implies the needed convergence. As for the
numerator, Chebyshev’s inequality establishes that for any ϵ > 0

Pr{|R(L,M,N)− r| > ϵ} ≤ varR(L,M,N)/ϵ2.

In the Independence case, using the identity var(A+B) ≤ 2 varA+2varB and the conditional
variance formula, conditioning on X1:M(t) := {Xm(t) : m = 1, 2, . . . ,M} gives

var

(
1

M

M∑
m=1

fN(Xm(t))

)
= var

(
1

M

M∑
m=1

[fN(Xm(t))−Ef(X1(t))]

)
(2)

= E var

[
1

M

M∑
m=1

[fN(Xm(t))−Ef(X1(t))]

∣∣∣∣∣X1:M(t)

]

+ varE

[
1

M

M∑
m=1

[fN(Xm(t))−Ef(X1(t))]

∣∣∣∣∣X1:M(t)

]

=
1

M2
E

M∑
m=1

σ2(Xm(t))

N
+

1

M2
var

M∑
m=1

[f(Xm(t))−Ef(X1(t))] (3)

=
Eσ2(X1(t))

MN
+

var f(X1(t))

M
. (4)

In this calculation it was not strictly necessary to subtract the constant Ef(X1(t)), but
this step will prove useful when we re-use this argument for the CRN case. Moreover,
var fL(x

∗) = σ2(x∗)/L. Since N ≥ 1, the second term in (4) dominates in that expression,
and we conclude that the variance of the numerator is O(M−1 + L−1) in the Independence
case, yielding the desired result. In the CRN case, define Ymn(t) to be the estimated objective
value from the nth postreplication on the mth macroreplication solution Xm(t). As in the
Independence case, we use the identity var(A+B) ≤ 2 varA+2varB to bound the variance

30

of the numerator by twice the variance of (2) plus 2σ2(x∗)/L. Then (3) instead becomes

1

M2
E var

[
1

N

N∑
n=1

M∑
m=1

Ymn(t)

∣∣∣∣∣X1:M(t)

]
+

1

M2
var

M∑
m=1

[f(Xm(t))−Ef(X1(t))]

=
1

M2N
var

[
M∑

m=1

Ym1(t)

∣∣∣∣∣X1(t)

]
+

var f(X1(t))

M
(5)

= O

(
1

N
+

1

M

)
, (6)

where the last line follows since the variance of a sum of M identically distributed terms
is O(M2). Thus, under CRN, the variance of the numerator is O(L−1 + M−1 + N−1) and
consistency follows.

Now consider Part 2 in the Independence case. For some point ξ lying on the line segment
between (r, s) and (R(L,M,N), S(L)),

µ(t;L,M,N)− µ(t) = g(R(L,M,N), S(L))− g(r, s)

= ∇g(r, s)′(R(L,M,N)− r, S(L)− s) + (∇g(ξ)−∇g(r, s))′(R(L,M,N)− r, S(L)− s),
(7)

where ′ denotes the transpose operator. The second term in (7) is a remainder term that,
by a Taylor expansion of ∇g(ξ) −∇g(r, s) can be seen to be of order Op(L

−1 +M−1). We
define µ̃(t;L,M,N) to be the first term in (7), which has mean 0. To obtain the order of
variance of this random variable, we write

µ̃(t;L,M,N) = s−1(1,−r/s)′(R(L,M,N)− r, S(L)− s)

=
1

s

[
1

M

M∑
m=1

[fN(Xm(t))−Ef(X1(t))]− [fL(x
∗)− f(x∗)]− (r/s)[fL(x0)− f(x0)− (fL(x

∗)− f(x∗))]

]

=
1

s

[
1

M

M∑
m=1

[fN(Xm(t))−Ef(X1(t))]− (1− r/s)[fL(x
∗)− f(x∗)]− (r/s)[fL(x0)− f(x0)]

]
.

(8)

The variance of (8) separates into two terms, the first of which we have already computed
in (4) to be of order O(M−1). The second of these terms is

1

s2L

[
(1− r/s)2σ2(x∗) + (r/s)2σ2(x0) + 2(1− r/s)(r/s)ρ(x0, x

∗)σ(x∗)σ(x0)
]
,

which is O(L−1). Here ρ(x0, x
∗) denotes the correlation between the estimated objective

function values from a single postreplication at each of x0 and x∗. Thus, the variance of
µ̃(t;L,M,N) can be written as

ς2(L,M,N) =
Eσ2(X1(t))

s2MN
+
var f(X1(t))

s2M
+
(1− r

s
)2σ2(x∗) + (r

s
)2σ2(x0) + 2(1− r

s
) r
s
ρ(x0, x

∗)σ(x0)σ(x
∗)

s2L
.

31

Now consider Part 3, i.e., the CRN case. We still have (7) where the second (error) term
is now Op(L

−1 + M−1 + N−1) due to (5). Define µ̂(t;L,M,N) to be the first term in (7),
which differs from µ̃(t;L,M,N) due to the difference between the dependence structure in
the Independence and CRN cases. Then µ̂(t;L,M,N) still has mean 0, but from (5) its
variance is now of order O(L−1 +M−1 +N−1). □

B Bootstrapping for Error Estimation

We propose a general bootstrapping approach for error estimation and point out specific
applications to the various metrics presented in this paper. Suppose we have performed M
independent macroreplications of a single solver on a single problem and we want to compute
the error associated with estimating some functional of the progress curve. Relevant examples
include the value of the mean or quantile progress at a fixed time t, the expected area under
a progress curve or a quantile of the α-solve time, as arises in solvability profiles. Here we
fix the problem and solver, so we suppress dependence on these quantities.

The following process outlines how one runs multiple macroreplications of a solver on a
given problem, runs postreplications and bootstraps the results.

1. Run Macroreplications: Run M independent macroreplications of the solver to
obtain sequences of recommended solutions X1,X2, . . . ,XM .

2. Run Postreplications: For each macroreplication m = 1, 2, . . . ,M , run N postrepli-
cations at each distinct solution in Xm = {Xm(t) : t ∈ [0, 1]} using CRN across the
solutions within each macroreplication. Let Ymn = {Ymn(t) : t ∈ [0, 1]} denote the
sample path of noisy observations from the nth postreplication at the solutions in
Xm. In addition, run L postreplications at x0 and x∗ and let Y0l and Y∗l denote the
corresponding noisy observations from the lth postreplication, l = 1, 2, . . . , L.

3. Bootstrap: Generate B bootstrap instances of the relevant estimator by repeating
Steps 3(a)–(c) below B times. The γ/2 and 1−γ/2 sample quantiles of these bootstrap
instances yield an approximate 100(1 − γ)% confidence interval. Alternatively, the
asymmetric bias-corrected bootstrap 100(1−γ)% confidence interval can be computed
[Efron, 1981].

(a) Outer-Level Bootstrap over Macroreplications: Obtain a bootstrap sample
of the sequences of recommended solutions,X⋆

1 ,X
⋆
2 , . . . ,X

⋆
M , i.e., sampleM times

with replacement from {X1,X2, . . . ,XM}.
(b) Inner-Level Bootstrap over Postreplications: For each bootstrapped se-

quence of recommended solutions, X⋆
m, obtain a bootstrap sample of sample

paths, Y ⋆
m1,Y

⋆
m2, . . . ,Y

⋆
mN , i.e., for each m = 1, 2, . . . ,M , sample N times with re-

placement from {Ym1,Ym2, . . . ,YmN}. Obtain paired bootstrap samples of noisy
observations from solutions x0 and x∗, Y ⋆

01, Y
⋆
02, . . . , Y

⋆
0L and Y ⋆

∗1, Y
⋆
∗2, . . . , Y

⋆
∗L, i.e.,

sample L times with replacement from {{Y01, Y∗1}, {Y02, Y∗2}, . . . , {Y0L, Y∗L}}.

32

(c) Compute the Bootstrap Instance of the Estimator: Construct the M
bootstrapped estimated progress curves

ν⋆
m(L,N) = {ν⋆

m(t;L,N) : t ∈ [0, 1]} =

{
f ⋆
N(X

⋆
m(t))− f ⋆

L(x
∗)

f ⋆
L(x0)− f ⋆

L(x
∗)

: t ∈ [0, 1]

}
for m = 1, 2, . . . ,M , where

f ⋆
N(X

⋆
m(t)) =

1

N

N∑
n=1

Y ⋆
mn(t), f ⋆

L(x0) =
1

L

L∑
l=1

Y ⋆
0l and f ⋆

L(x
∗) =

1

L

L∑
l=1

Y ⋆
∗l.

Compute the bootstrap instance of the estimator as a functional of the estimated
progress curves, ν⋆

: (L,N) = {ν⋆
1(L,N),ν⋆

2(L,N), . . . ,ν⋆
M(L,N)}. For example,

the estimator of the mean progress at time t for a given bootstrap instance is
M−1

∑M
m=1 ν

⋆
m(t;L,N).

The bootstrapping algorithm above can be modified in a natural way for the case of mul-
tiple problems and/or solvers. Essentially, one simply replicates all steps over the additional
dimensions of problems and solvers, though some care is necessary if CRN have been used.
For example, for the solvability profile of a given solver, Steps 1–3 are carried out for each
problem in P . Each of these steps can be performed either independently across problems
or using CRN, though the latter is unlikely to yield any variance reduction. For difference
profiles, the same setup is performed for each solver, but here the use of CRN across solvers
may be more beneficial.

33

