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Abstract

When working with models that allow for many candidate solutions, simulation
practitioners can benefit from screening out unacceptable solutions in a statistically
controlled way. However, for large solution spaces, estimating the performance of all
solutions through simulation can prove impractical. We propose a statistical framework
for screening solutions even when only a relatively small subset of them are simulated.
Our framework derives its superiority over exhaustive screening approaches by lever-
aging available properties of the function that describes the performance of solutions.
The framework is designed to work with a wide variety of available functional informa-
tion and provides guarantees on both the confidence and consistency of the resulting
screening inference. We provide explicit formulations for the properties of convexity
and Lipschitz continuity and show through numerical examples that our procedures
can efficiently screen out many unacceptable solutions.

1 Introduction

Operations researchers have increasingly relied on stochastic simulations to understand com-
plex systems. These simulation models are typically endowed with a vector of parameterized
inputs we term a solution. Each solution has an associated performance that can be esti-
mated by running replications of the simulation with the corresponding inputs. Motivating
applications of this general approach arise in simulation optimization, feasibility determina-
tion, and model calibration.

When there are many candidate solutions, it can be difficult to thoroughly evaluate the
performance of all solutions through exhaustive simulation. A more reasonable approach is
to first screen out, meaning remove from consideration, solutions regarded as unacceptable
based on initial experiments. However, obtaining even a single replication from all candidate
solutions is sometimes impractical. Thus, our goal is to provide a method for screening
solutions that can work even when simulating only a small subset of them. Screening pro-
cedures can be employed to efficiently remove unacceptable solutions before running a more
intensive algorithm [Nelson et al., 2001] or for post hoc analysis [Boesel et al., 2003]. This
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use of the term “screening” differs from “factor screening” which entails removing solution-
defining variables having minimal impact on the performance [Bettonvil and Kleijnen, 1997,
Wan et al., 2006].

Although we discuss our methodological framework in generality, we at times focus on its
uses for simulation optimization, where either optimal or near-optimal solutions are deemed
acceptable. Within this setting, classical subset-selection methods [Gupta, 1965, Nelson
et al., 2001, Boesel et al., 2003] guarantee that the optimal solution is retained with high
probability. While these methods are highly effective and have been extended to parallel
computing environments [Ni et al., 2014], they do not solve our problem as posed, as they
still require simulating all candidate solutions. These methods treat the performances of
solutions as being unrelated to their location in the solution space and therefore fail to
exploit any structural properties of the performance function.

A separate technique that directly targets the performance function is simulation meta-
modeling. Here, one builds an approximate model of the performance function, often based
on statistical or machine-learning models. These metamodels allow one to predict perfor-
mances at unsimulated solutions. Some metamodeling methods formalize functional proper-
ties as constraints and determine the metamodel that best fits the simulation outputs subject
to those constraints, e.g., convex and polynomial regression [Lim and Glynn, 2012, Kleijnen,
2015]. Others impose a probabilistic structure, e.g., Gaussian process regression [Ankenman
et al., 2010] or Gaussian Markov random fields [Salemi et al., 2019a]. While metamodels are
central to some simulation-optimization searches, e.g., stochastic trust-region methods like
STRONG [Chang et al., 2013] and ASTRO-DF [Shashaani et al., 2018], to the best of our
knowledge metamodels have not been used for screening. Furthermore, metamodels do not
naturally lend themselves to probabilistic guarantees without extremely strong assumptions
[Wan et al., 2016]. For example, the commonly used commercial software OptQuest employs
neural networks to remove solutions from consideration [Laguna, 2011], but the procedure
lacks statistical guarantees on the screening inference. Our methods achieve the best of both:
screening out unsimulated solutions while providing a statistical guarantee akin to that of
subset selection.

Our framework converts general information about the performance function into a
screening approach delivering statistical guarantees. This is valuable because for some
simulation models it is possible to analytically or empirically establish properties of the
performance function, such as Lipschitz continuity, convexity, or bounds. More specifically,
we propose screening solutions by measuring the discrepancy between the observed data
and the space of performance functions having certain known properties; our framework
thus shares some concepts with constrained statistical inference [Silvapulle and Sen, 2005].
When further restricting the space of functions to those for which a particular solution is
acceptable, this discrepancy measures the plausible acceptability of said solution. A very
large discrepancy at a solution implies it is implausible that the solution is acceptable. Our
methods accordingly remove from consideration solutions for which the discrepancy is suf-
ficiently large—an act we term plausible screening. We prescribe reasonable discrepancies
and cutoffs that achieve standard statistical properties desired in screening. With proper
care, our methods can provide confidence—which can be thought of as the probability of
correct selection guarantee from subset selection—and consistency—the concept that any
unacceptable solution is screened out in the limit. Our results here substantially extend the
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preliminary results presented in Plumlee and Nelson [2018] and Eckman et al. [2020].
This article introduces the screening framework, details the computational implementa-

tion, and provides some numerical examples. In Section 2, we mathematically formulate the
problem of screening unacceptable solutions, and in Section 3, we motivate our approach
of exploiting available information about the performance function. Section 4 lays out the
theoretical underpinning for assessing plausible acceptability and presents an algorithm for
constructing a subset that attains asymptotic confidence and a weak form of consistency.
We then present an alternative algorithm in Section 5 that can, in certain instances, more
efficiently construct a relaxed subset of solutions. In Section 6, we test the algorithms on re-
alistic simulation-optimization problems. We conclude in Section 7 with potential extensions
of the framework and open research questions.

2 Setting and Goals

This section describes the setup for evaluating solutions via stochastic simulation, the general
definition of acceptable solutions, and the statistical guarantees we desire in screening.

2.1 Stochastic Simulation

We lay out a mathematical framework for screening simulated solutions from a set of can-
didate solutions X ⊆ Rd which can be discrete, countable or uncountable. Each solution
x ∈ X has an associated scalar quantity of interest labeled µ(x), which is unknown but can
be estimated by sampling replications of a stochastic simulation. We refer to µ(x) as the
performance of solution x. For situations in which X is large, meaning either a large discrete
set, an infinite set, or a continuum of solutions, estimating the performances of all candidate
solutions is impractical or impossible. Thus, a decision-maker simulates only a subset of
k solutions, X ≡ {x1, x2, . . . , xk} ⊆ X , termed the experimental set. While we discuss the
experimental set X generically, it may be chosen, for example, to fill X or to concentrate
sampling around a region of interest. We find it convenient to consider the restriction of the
function µ : X 7→ R to X, denoted by µ(X) ≡ (µ(x1), . . . , µ(xk))

>, which is the vector of the
performances of the simulated solutions. While not directly observable, this vector can be
estimated through simulation on the limited experimental set.

Let Y`(x) denote the (stochastic) output of the `th independent and identically distributed
(i.i.d.) simulation replication at a solution x, with E[Y`(x)] = µ(x) for all ` = 1, 2, . . . and
all solutions x in X . For any pair of solutions x and x′, Y`(x) and Y`(x

′) are related via
a common covariance function Σ: X × X 7→ R described by Σ(x, x′) ≡ Cov(Y`(x), Y`(x

′)).
The covariance matrix denoted by Σ(X) gives the covariance between outputs for all pairs
of solutions in the experimental set, and we assume that Σ(X) is positive definite. For a
given `, define Y` ≡ (Y`(x1), . . . , Y`(xk))

>, the vector of outputs from the `th simulation
replications at each solution in the experimental set. The vectors Y1,Y2, . . . , are assumed
to be mutually independent and identically distributed.

We consider two ways of simulating replications across solutions:

(S1) Independent Sampling: Outputs at different solutions are independent (i.e., Σ(X) is
diagonal) and the number of replications taken at each solution xi ∈ X is ni for i =
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1, . . . , k, possibly unequal.

(S2) Dependent Sampling: Outputs at different solutions are dependent—as would be the
case if common random numbers (CRN) were used—and an equal number of replica-
tions is taken at each solution xi ∈ X, i.e., ni = n for i = 1, . . . , k.

We estimate µ(X) by µ̂ ≡ (µ̂1, . . . , µ̂k)
> where µ̂i = ni

−1
∑ni

`=1 Y`(xi) for i = 1, . . . , k and
Σ(X) by

Σ̂ ≡

{
diag(σ̂2

1, . . . , σ̂
2
k) where σ̂2

i = (ni − 1)−1
∑ni

`=1(Y`(xi)− µ̂i)2 for i = 1, . . . , k in (S1),

[σ̂2
ij]k×k where σ̂2

ij = (n− 1)−1
∑n

`=1(Y`(xi)− µ̂i)(Y`(xj)− µ̂j) for i, j = 1, . . . , k in (S2).

We assume that Σ̂ is positive definite with probability one.

2.2 Acceptable Solutions

For a given performance function µ, we define A as the set of solutions deemed acceptable by
the decision maker, i.e., those whose performances exhibit some quality of interest. Although
A depends on the unknown function µ, we choose to suppress µ from the notation. Different
definitions of acceptability arise in a variety of simulation applications and can be illustrated
within the setting of production planning, such as semiconductor wafer fabrication [Liu et al.,
2011]. Discrete-event simulation models are used in this domain to study the costs associated
with a given release plan—a schedule of batch jobs for different product types—subject to
stochastic demand for the products. A decision-maker may be interested in finding a release
plan x whose expected total costs (defined as the sum of work-in-progress cost, inventory
cost, and backlog cost) is within δ dollars of the smallest. Alternatively, the decision-maker
may wish to determine whether a given release plan satisfies a service requirement, e.g., that
the associated expected backlog cost is below µ0. It may also be of interest to improve upon
a control or default release plan xc, such as the one suggested by a simple model. On the
other hand, the decision-maker may be interested in release plans whose expected work in
progress is within ε units of µ† [Spearman et al., 1990].

While we leave A purposely vague to demonstrate the versatility of the proposed frame-
work, one can describe these common examples of A mathematically:

� Optimization: {x ∈ X : µ(x) ≤ minx′∈X µ(x′) + δ} for some optimality gap δ ≥ 0;

� Feasibility Determination: {x ∈ X : µ(x) ≤ µ0} for some threshold µ0;

� Comparison to a Control: {x ∈ X : µ(x) ≤ µ(xc)} for some control solution xc ∈ X ;

� Comparison to a Target: {x ∈ X : |µ(x)−µ†| ≤ ε} for some tolerance ε ≥ 0 and target
µ†.

In the first three examples, it is assumed without loss of generality that smaller performance
is preferable. A common feature is that determining whether a given solution belongs to A
entails checking a (possibly infinite) system of linear inequalities with respect to the candidate
solutions’ performances. We later leverage this property to develop tractable methods for
inferring whether an arbitrary solution is acceptable.
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2.3 Statistical Guarantees in Screening

Ideally, the decision-maker seeks to identify the full set of acceptable solutions and no others,
to serve as the basis for some decision. In the presence of simulation error, the decision-
maker must settle for a subset of solutions having desirable statistical guarantees in terms
of screening, i.e., inferring which solutions are acceptable [Bechhofer et al., 1995]. Let Sn
denote the subset of solutions returned after obtaining replications at solutions in X as
specified by n ≡ (n1, . . . , nk). Our definitions of statistical guarantees of subsets suppose
that the performance function µ belongs to some function space M , which we specify in
Section 3.2.

Definition 1 (Finite-sample confidence) A subset Sn achieves finite-sample confidence
1−α for α ∈ [0, 1] if for sufficiently large mini=1,...,k ni and any µ ∈M , P(x0 ∈ Sn) ≥ 1−α
for all x0 ∈ A.

Finite-sample confidence states that for any performance function in M , each acceptable
solution will be correctly screened with marginal probability exceeding 1− α. For the most
part, finite-sample confidence is unattainable unless the random outputs of the simulation
replications come from a known family of distributions. A more widely achievable property
is asymptotic confidence, which follows from designing methods for normally distributed
outputs and applying the Central Limit Theorem.

Definition 2 (Asymptotic confidence) A subset Sn achieves asymptotic confidence 1−α
for α ∈ [0, 1] if for any µ ∈M , P(x0 ∈ Sn) & 1− α as mini=1,...,k ni →∞ for all x0 ∈ A.

In Definition 2, the statement P(x0 ∈ Sn) & 1− α means that for any ε > 0, there exists an
n(ε, x0) such that for all n for which mini=1,...,k ni ≥ n(ε, x0), P(x0 ∈ Sn) ≥ 1− α− ε.

Finite-sample and asymptotic confidence describe a subset’s ability to avoid screening
out acceptable solutions with high probability, but not its ability to screen out unacceptable
solutions, i.e., those that do not belong to A. For this, we require the notion of consistency.

Definition 3 (Consistency) A subset Sn achieves consistency if for any µ ∈M , P(x0 ∈
Sn)→ 0 as mini=1,...,k ni →∞ for all x0 /∈ A.

Except in special cases, like exhaustive simulation where X = X , consistency is unachievable
since even with direct evaluation of µ(X), the rest of the performance function is indeter-
minable. We soon introduce a less exacting form of consistency that accounts for having
simulated at only solutions in the experimental set.

3 Screening Using Functional Properties

In this section, we explain how known functional properties of the performance function can
be combined with our screening framework. Section 3.3 develops the main ideas behind our
methods in a simplified setting in which solutions are simulated without error.
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3.1 Functional Properties of the Performance Function

Our goal is to use information obtained from a small experimental set to screen out a massive
number of solutions that, given the data, could not plausibly be acceptable. Importantly,
we seek the ability to screen out even unsimulated solutions. This task would be impossible
without some means of relating an unsimulated solution’s performance to those of simulated
solutions from the experimental set. Our approach operates under the assumption that the
decision-maker possesses known or assumed properties of the performance function µ that
enable such comparisons among simulated and unsimulated solutions. Examples include
knowledge that µ is convex (likewise concave, strongly convex, or almost convex) over X ,
Lipschitz continuous (likewise Hölder continuous or second-order Lipschitz continuous) with
a known or assumed upper bound on the associated constant, or a polynomial in x with
known or assumed degree. This type of information can also be augmented with auxiliary
properties on the performances of individual solutions, like bounds on µ or known perfor-
mances of some solutions.

Our presupposition of a priori functional information is in contrast to the approach of
assuming a probabilistic structure for µ, e.g., treating µ as a realization of a Gaussian
process on X , as is common in metamodeling [Santner et al., 2003, Salemi et al., 2019b]
and Bayesian optimization [Frazier et al., 2009, Scott et al., 2011]. By the same token, our
approach differs from that of estimating the posterior probability that µ satisfies certain
functional properties, e.g., convexity [Jian and Henderson, 2020]. Our framework therefore
does not require a measure over the function space described by the known properties, only
a means of checking whether an arbitrary function lies in the space.

Situations in which such knowledge of functional properties is available are not rare.
We explicate two numerical examples where Lipschitz continuity or convexity information is
present in Section 6. In addition, we call attention to two common, practical techniques for
verifying functional properties of simulation models.

Inheritance from sample-path functions. Many properties of sample-path functions are
inherited when applying the expectation operator, e.g., convexity [Shaked and Shan-
thikumar, 1988], continuity [Shapiro and Wardi, 1996], and bounds. Proving that the
sample-path functions possess any such property with probability one implies that the
performance function does as well [Kim et al., 2015]. Examples include:

Stochastic activity networks. The expected length of the longest path is a convex
function in terms of the mean task durations; see Appendix E of Plambeck et al.
[1996] for a derivation.

Tandem production lines with unreliable machines. The steady-state throughput
is a convex function in terms of the cycle times of the machines [Plambeck et al.,
1996].

Inventory stocking under dynamic customer substitution. The expected profit can
be shown to be a Hölder-continuous function in terms of the initial inventory
levels [Mahajan and van Ryzin, 2001].

Stochastic orders. Some stochastic orders imply an inequality relating two expected values
[Shaked and Shanthikumar, 2007]. This approach can be used to relate µ(x) and µ(x′)
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for some x 6= x′ or to relate µ(x) to another expected value that is known, thereby
providing a bound on µ(x). Examples include:

GI/GI/c queueing systems. Many random quantities of interest (e.g., sequential
departure times) are stochastically ordered when comparing a GI/GI/c queueing
system with a first-in first-out service discipline to another in which arrivals are
arbitrarily assigned among c channels, independent of the service process [Wolff,
1977].

Portfolio optimization. A risk-averse decision-maker wishes to assemble a port-
folio from a finite collection of assets to maximize the expected return rate while
requiring that the portfolio’s return rate stochastically dominate a benchmark
rate [Dentcheva and Ruszczyński, 2006].

3.2 Spaces of Performance Functions

We incorporate functional properties into our framework by characterizing how they restrict
the set of functions to which µ can belong and, in turn, the values its restriction µ(X)
can take. Let F denote the set of functions mapping from X to R and let M ⊆ F
denote the set of functions that possess the specified functional properties. Furthermore,
for a given performance function m ∈ M , let A(m) represent the corresponding set of
acceptable solutions. Since screening takes place by examining individual solutions x0 ∈ X ,
we define M(x0) ≡ {m ∈M : x0 ∈ A(m)}, the set of functions in M for which solution x0

is acceptable.
Recall that µ(X) represents the performances of the solutions in our experimental set

x1, . . . , xk. We will similarly use the notation m(X) to denote the values an arbitrary function
m takes at those same x1, . . . , xk. The projection of M(x0) onto Rk—corresponding to
solutions in X—is defined as

M(x0) ≡
{
m ∈ Rk : there exists m ∈M(x0) such that m(X) = m

}
,

the set of vectors of performances of the solutions x1, . . . , xk for which there exists an inter-
polating function m belonging to M(x0). It follows from these definitions that for a given
performance function µ ∈M , its restriction µ(X) is in M(x0) if x0 is an acceptable solution.
The converse, however, does not necessarily hold, since the restriction of µ to X does not de-
termine the performances of solutions in the rest of the solution space. We next demonstrate
the central role M(x0) plays in screening.

3.3 Screening Solutions without Estimation Error

Temporarily assume that solutions’ performances can be calculated directly without simu-
lation, i.e., the decision-maker can directly obtain µ(X). Given that only solutions in the
experimental set have been evaluated, some solutions likely cannot be correctly screened with
certainty. A reasonable approach is to classify as belonging to A any solution x0 for which
there exists a function in M(x0) that interpolates µ(X). We denote the resulting subset of
solutions by

S(X) ≡ {x0 ∈ X : µ(X) ∈ M(x0)}.
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This notation reflects the dependence of the subset S(X) on X; a different experimental set
would yield a different subset of solutions that are possibly acceptable. The subset S(X) is
the smallest subset that contains all acceptable solutions having only evaluated solutions in
X and only knowing the given properties of µ. If an arbitrary solution x0 is not in S(X), we
conclude that there does not exist an interpolating function in M(x0), hence it is impossible
that x0 is an acceptable solution. Therefore, all acceptable solutions are included in this
subset, i.e. A ⊆ S(X). In addition, if X = X , then all solutions can be correctly screened,
meaning S(X) = A. Thus, the gap between these two subsets of solutions comes from the
fact that the experimental set comprises only a subset of the candidate solutions.

Example 1 (Optimizing a Lipschitz Continuous Function) We apply the formulation
above to an optimization problem in which the objective function µ is known to be Lipschitz
continuous with constant γ, taking A = {x ∈ X : µ(x) ≤ minx′∈X µ(x′)}. Thus,

M(x0) =
{
m ∈ Rk : mi −mj ≤ γmin {‖xi − xj‖, ‖xi − x0‖} for all i, j = 1, . . . , k

}
,

and

S(X) =

{
x0 ∈ X : max

i=1,...,k
µ(xi)− γ‖xi − x0‖ ≤ min

j=1,...,k
µ(xj)

}
,

where mi is the ith component of the vector m and ‖·‖ is the Euclidean norm; see Appendix A
for a complete derivation.

To determine if a solution x0 belongs to S(X), one must check whether µ(X) belongs to
M(x0). If M(x0) can be expressed as a polyhedron with an explicit constraint matrix and
right-hand-side vector, as in Example 1, then checking if µ(X) is in M(x0) is straightforward.
More generally, if M(x0) can be implicitly described as the projection of a polyhedron, then
checking if µ(X) is in M(x0) involves solving a linear program. In Section 5, we exploit this
fact to devise efficient methods for screening solutions. One can imagine further expanding
this framework to nonlinear constraints, but this paper focuses on the potential in polyhedral
representations.

As setup for the following sections, we present a relaxed version of consistency featuring
S(X).

Definition 4 (S(X) Consistency) A subset Sn achieves S(X) consistency if for any µ ∈
M , P(x0 ∈ Sn)→ 0 as mini=1,...,k ni →∞ for all x0 /∈ S(X).

As A is a subset of S(X), we conclude that S(X) consistency holds whenever consistency
(Definition 3) holds. The property of S(X) consistency implies that as the simulation effort
at solutions in X increases to infinity, the probability that a given solution is in Sn goes to
zero for any solution that could be screened out if µ(X) were known. In other words, an
S(X)-consistent subset asymptotically screens out all solutions that—given the limited exper-
imental set and known functional properties of the performance function—cannot possibly
be acceptable.

4 Plausible Screening

In this section, we give an overview of our method of accounting for simulation error alongside
theoretical results that justify its use.
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4.1 Overview

When solutions in the experimental set are simulated without error, as in Section 3.3, a
natural subset to return is S(X), which consists of all solutions x0 for which µ(X) ∈ M(x0).
However, when there is simulation error, naively plugging in the estimator µ̂ for the unknown
µ(X) and retaining all solutions x0 for which µ̂ ∈ M(x0) will not produce a subset achieving
confidence and S(X) consistency. Since the probability that µ̂ ∈ M(x0) is not well controlled,
this will likely result in a set that eliminates too many solutions, thus violating the confidence
guarantee through undercoverage. We properly account for the uncertainty about µ(X) by
developing a subset comprising solutions x0 for which µ̂ is sufficiently close to M(x0), where
the precise meaning of “sufficiently close” ensures our guarantees of confidence and S(X)
consistency are delivered.

To measure the distance between µ̂ and M(x0), we first introduce the standardized dis-

crepancy between µ̂ and a performance vector m = (m1, . . . ,mk), denoted by dn(m, µ̂, Σ̂).

The vector of sample sizes, n, and sample covariance matrix, Σ̂, appear in the standardized
discrepancy for the purpose of scaling differences between performance vectors in line with
the estimation error; specific examples will be given below. We hereafter assume that the
standardized discrepancy satisfies the following condition:

(C1) dn(m, µ̂, Σ̂) ≥ 0 for all m ∈ Rk and dn(µ̂, µ̂, Σ̂) = 0 with probability one.

Additional conditions are introduced in Section 4.2 that are necessary for maintaining con-
fidence and S(X) consistency.

Minimizing the standardized discrepancy over performance vectors in M(x0) gives the
minimum standardized discrepancy of x0,

Dn(x0, µ̂, Σ̂) ≡ min
m∈M(x0)

dn(m, µ̂, Σ̂), (1)

which can be interpreted as the distance between the sample mean vector µ̂ and the set M(x0).
The minimum standardized discrepancy is an indication of how likely it is that, given the
sample data, the true performance function µ belongs to M(x0), the space of functions that
possess the known functional properties and for which solution x0 is acceptable. A smaller
value of Dn(x0, µ̂, Σ̂) indicates stronger evidence that x0 is an acceptable solution, while a

larger value of Dn(x0, µ̂, Σ̂) indicates stronger evidence that x0 is an unacceptable solution.
We say that a function m is plausible with respect to an arbitrary solution x0 if it belongs

to M(x0) and its restriction m(X) is sufficiently close to µ̂ in terms of the standardized
discrepancy between the two vectors. From Definition (1), a solution x0 admits a plausible

function if and only if its minimum standardized discrepancy Dn(x0, µ̂, Σ̂) is sufficiently
small. Our screening method, which we refer to as Plausible Screening (PS), returns the
subset comprising solutions x0 for which there exists a plausible function. To be precise, the
PS subset SPS

n consists of solutions x0 for which µ̂ is within a distance D of M(x0), i.e.,

SPS
n ≡

{
x0 ∈ X : Dn(x0, µ̂, Σ̂) ≤ D

}
.

Equivalently, SPS
n can be defined as all x0 ∈ X such that µ̂ ∈ R(x0), where

R(x0) ≡
{
m̃ ∈ Rk : Dn(x0, m̃, Σ̂) ≤ D

}
9



is the set of performance vectors that are within a distance D to M(x0). Just as M(x0)
is the performance set for which x0 is possibly acceptable when µ(X) is directly observed,
its random relaxation R(x0) can be viewed as a performance set for which x0 is plausibly
acceptable, in light of the uncertainty about µ(X).

4.2 Statistical Guarantees

From the definition of SPS
n , we can see that choosing D as the 1 − α quantile of the mini-

mum standardized discrepancy Dn(x0, µ̂, Σ̂) leads to finite-sample confidence. However, the
distribution of the minimum standardized discrepancy depends on the unknown quantities
µ(X) and Σ(X) in addition to sample sizes, functional constraints and the definition of ac-
ceptability. For the cases we investigate, namely Lipschitz continuity and convexity of µ,
the associated quantile cannot be evaluated numerically or by Monte Carlo. We circumvent
this by considering the statistic dn(µ(X), µ̂, Σ̂), which first-order stochastically dominates the
minimum standardized discrepancy because when x0 is an acceptable solution, µ(X) ∈ M(x0),

and hence dn(µ(X), µ̂, Σ̂) ≥ minm∈M(x0) dn(m, µ̂, Σ̂) = Dn(x0, µ̂, Σ̂). We introduce standard-

ized discrepancies for which dn(µ(X), µ̂, Σ̂) is pivotal under a normality assumption; i.e., its
distribution is independent of µ(X) and Σ(X). Its distribution is also independent of M(x0),
since setting m = µ(X) avoids the minimization in Definition (1). This simplification allows
us to derive a deterministic, uniform cutoff D that ensures SPS

n has the desired statistical
properties.

We require that the pairing of dn(·, µ̂, Σ̂) and D satisfy three conditions for all µ(X) ∈ Rk

and Σ(X) ∈ Rk×k positive definite:

(C2) P
(
dn(µ(X), µ̂, Σ̂) ≤ D

)
≥ 1− α;

(C3) P
(
dn(µ(X), µ̂, Σ̂) ≤ D

)
→ 1− α as min

i=1,...,k
ni →∞; and

(C4) max
m∈Rk

{
‖µ̂−m‖ : dn(m, µ̂, Σ̂) ≤ D

}
w.p.1→ 0 as min

i=1,...,k
ni →∞,

where ‖ · ‖ again denotes the Euclidean norm. Although the choice of D satisfying the
conditions above depends on the values of k, n, and α, we choose to suppress this dependence
in the notation.

Conditions (C2) and (C3) relate to finite-sample and asymptotic confidence, respectively,
ensuring that D is sufficiently large. Condition (C4), on the other hand, relates to consis-
tency. It ensures that D remains sufficiently small as the sample sizes increase, so that for
a solution to be included in SPS

n , the restriction of the best-fitting model to the solutions in
the experimental set must more closely align with the observed sample means.

Theorems 1 and 2 establish that, under Conditions (C2)–(C4), SPS
n possesses the desired

properties of confidence and S(X) consistency; proofs appear in Appendix C.

Theorem 1 If dn(·, µ̂, Σ̂) and D satisfy Conditions (C2) and (C3), then SPS
n achieves finite-

sample confidence and asymptotic confidence.

Theorem 2 If dn(·, µ̂, Σ̂) and D satisfy Condition (C4), then SPS
n achieves S(X) consistency.
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4.3 Standardized Discrepancies

Our screening framework can easily accommodate different choices of standardized discrep-
ancies and cutoffs. We present several examples that satisfy Conditions (C1)–(C4) and
provide a representative proof in Appendix C. Condition (C2) is established under a nor-
mality assumption: in Setting (S1), Y`(xi) ∼ N (µ(xi),Σ(xi, xi)) for all ` = 1, 2, . . . , ni and
i = 1, . . . , k, and in Setting (S2), Y` ∼ N (µ(X),Σ(X)) for all ` = 1, 2, . . . , n.

In Setting (S1), Conditions (C1)–(C4) are satisfied by

d1
n(m, µ̂, Σ̂) ≡

k∑
i=1

√
ni
σ̂i
|µ̂i −mi|

with D1 defined as the 1 − α quantile of the sum of the absolute value of k independent
t-distributed random variables, each with degrees of freedom n1 − 1, n2 − 1, . . . , nk − 1,
respectively; by

d2
n(m, µ̂, Σ̂) ≡

k∑
i=1

ni
σ̂2
i

(µ̂i −mi)
2

with D2 defined as the 1 − α quantile of the sum of k independent F -distributed random
variables, each with numerator degrees of freedom 1 and denominator degrees of freedom
n1 − 1, n2 − 1, . . . , nk − 1, respectively; and by

d∞n (m, µ̂, Σ̂) ≡ max
i=1,...,k

√
ni
σ̂i
|µ̂i −mi|

with D∞ defined as the 1−α quantile of the maximum of the absolute value of k independent
t-distributed random variables, each with ni − 1 degrees of freedom. In our discussion, we
find it convenient to refer to these standardized discrepancies by the shorthand d1

n, d
2
n, and

d∞n . Plumlee and Nelson [2018] focused on the choice of d2
n and D2 and Eckman et al. [2020]

explored connections to existing screening methods, such as the Screen-to-the-Best procedure
[Nelson et al., 2001].

In Setting (S2), Conditions (C1)–(C4) are satisfied by

dCRN
n (m, µ̂, Σ̂) ≡ n(µ̂−m)>Σ̂−1(µ̂−m)

with DCRN defined as k(n− 1)/(n− k) times the 1− α quantile of an F -distributed random
variable with numerator degrees of freedom k and denominator degrees of freedom n − k.
For Σ̂ to be invertible in Setting (S2), a minimum of k + 1 replications must be obtained
from each solution, i.e., n ≥ k + 1.

As can be seen from these examples, a uniform cutoff D can be specified as the 1 − α
quantile of the pivotal statistic dn(µ(X), µ̂, Σ̂). The given cutoffs D1, D2, D∞, and DCRN

are the tightest uniform cutoffs for their respective standardized discrepancies that deliver
finite-sample confidence irrespective of the properties of µ. To see this, consider the case
in which the decision-maker has complete knowledge of the performances of the solutions
in the experimental set, i.e., M(x0) = {µ(X)}. Thus Dn(x0, µ̂, Σ̂) = dn(µ(X), µ̂, Σ̂) and the
specified cutoffs are exactly the 1− α quantiles of the minimum standardized discrepancies.
The coverage of any acceptable solution x0 is therefore exactly 1− α.
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5 Computational Considerations and Relaxed Screen-

ing

Constructing SPS
n entails repeatedly solving the optimization problem described in Defini-

tion (1) and comparing its optimal value, Dn(x0, µ̂, Σ̂), to the cutoff D for each x0 ∈ X .
Depending on the difficulty of the optimization problem and the number of candidate solu-
tions, constructing SPS

n in this manner could be computationally expensive. In this section,
we present an alternative subset consisting of solutions for which µ̂ belongs to a polyhedral
relaxation of R(x0). Screening a solution therefore involves solving a linear program which,
in certain cases, can be substantially cheaper. Compared to the subset SPS

n , this approach
results in a more conservative subset in the sense that it contains all of the solutions in SPS

n

and possibly more.

5.1 Polyhedral Relaxation of R(x0) via a Relaxation of M(x0)

We demonstrate this conservative approach for the situation in which M(x0) can be described
as the projection of a polyhedron.

Assumption 1 For each solution x0 ∈ X ,

M(x0) =
{
m ∈ Rk : there exists w ∈ Rq such that Am + Cw ≤ b

}
,

for some A ∈ Rp×k, C ∈ Rp×q, b ∈ Rp, where A, C, and b may depend on x0 and X.

For A, C, and b in Assumption 1, we suppress x0 and X for notational convenience.
Assumption 1 depends on both the choice of function space and the definition of the set of

acceptable solutions. This assumption holds for most combinations discussed in this paper,
e.g., finding the global minima of a convex or Lipschitz continuous function. In Example 1,
for instance, M(x0) was explicitly expressed as a polyhedron in Rk. In Example 2 below,
we demonstrate that Assumption 1 also holds for the convex case; see Appendix A for a
complete derivation.

Example 2 (Optimizing a Convex Function) For the problem of optimizing a convex
function, one formulation of M(x0) is

M(x0) = {m ∈ Rk : there exists m0 ∈ R and ξ1, . . . , ξk ∈ Rd such that

mi −mj − (xi − xj)>ξi ≤ 0 for all i, j = 1, . . . , k

mi −m0 − (xi − x0)>ξi ≤ 0 for all i = 1, . . . , k

−mi + m0 ≤ 0 for all i = 1, . . . , k}.

From this representation of M(x0), it is easy to identify A, C, and b as defined in Assump-
tion 1. The components of w = (m0, ξ

>
1 , . . . , ξ

>
k )> represent the performance of solution x0

and subgradients at solutions x1, . . . , xk.
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To explain our approach, define the polyhedron P ≡ {(m,w) ∈ Rk ×Rq : Am+Cw ≤ b},
such that the projection of P onto Rk is M(x0). Our approach is to relax P by increasing its
right-hand-side vector b and project the enlarged polyhedron onto Rk. To compensate for
the uncertainty about µ(X), we offset b by defining

b′j = bj + max
m∈Rk

{
a>j (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
for all j = 1, . . . , p,

where aj is the jth row of A, expressed as a column vector. Condition (C1) implies that for

any a ∈ Rk, maxm∈Rk

{
a>(µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
≥ 0; thus b′j ≥ bj with probability one

for all j = 1, . . . , p.
For the four standardized discrepancies outlined in Section 4.2,

max
m∈Rk

{
a>j (µ̂−m) : d1

n(m, µ̂, Σ̂) ≤ D1
}

= D1 max
i=1,...,k

σ̂i√
ni
|aji|,

max
m∈Rk

{
a>j (µ̂−m) : d2

n(m, µ̂, Σ̂) ≤ D2
}

=

√√√√D2

k∑
i=1

σ̂2
i

ni
a2
ji,

max
m∈Rk

{
a>j (µ̂−m) : d∞n (m, µ̂, Σ̂) ≤ D∞

}
= D∞

k∑
i=1

σ̂i√
ni
|aji|, and

max
m∈Rk

{
a>j (µ̂−m) : dCRN

n (m, µ̂, Σ̂) ≤ DCRN
}

=

√
DCRN

n
a>j Σ̂aj,

for all j = 1, . . . , p; derivations appear in Appendix B. In the case of dCRN
n and DCRN,

adjusting the right-hand-side vector in this way follows the approach of Anderson [1984] for
constructing simultaneous confidence intervals for linear combinations of the components of
µ(X); see Equation (15) on pages 166–167 therein. From the expressions above, it is apparent

that b′ ≡ (b′1, . . . , b
′
p)
> is a random vector whose components are functions of Σ̂ and n, but

not µ̂.

5.2 Relaxed Plausible Screening

The projection of the relaxation of P above onto Rk is given by

R′(x0) ≡
{
m ∈ Rk : there exists w ∈ Rq such that Am + Cw ≤ b′

}
.

The polyhedron R′(x0) is a random relaxation of M(x0), and Lemma 1 further shows that it
is also a relaxation of R(x0).

Lemma 1 If Assumption 1 holds, then R(x0) ⊆ R′(x0) with probability one for all x0 ∈ X .

Our more conservative screening method, which we refer to as Relaxed Plausible Screen-
ing (RPS), returns a subset SRPS

n defined as

SRPS
n ≡ {x0 ∈ X : µ̂ ∈ R′(x0)} ,

the conservatism of which is is made clear in Corollary 1.
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Corollary 1 If Assumption 1 holds, then SPS
n ⊆ SRPS

n with probability one.

Theorems 3 and 4 establish that, under Conditions (C2)–(C4), SRPS
n possesses the desired

properties of confidence and S(X) consistency.

Theorem 3 If dn(·, µ̂, Σ̂) and D satisfy Conditions (C2) and (C3), then SRPS
n achieves finite-

sample confidence and asymptotic confidence.

Theorem 4 If dn(·, µ̂, Σ̂) and D satisfy Condition (C4), then SRPS
n achieves S(X) consis-

tency.

The relaxation R′(x0) that is used to construct SRPS
n depends on the representation of

M(x0) in Assumption 1. Hence a different representation of M(x0)—meaning a different
choice of A, C, and b—can result in a different relaxation R′(x0) and thus different so-
lutions being included in SRPS

n . The extreme case of this would be the elimination of
C altogether, as shown in Theorem 5. This result demonstrates that the representation
M(x0) =

{
m ∈ Rk : Am ≤ b

}
for some A ∈ Rp×k and b ∈ Rp yields a tighter polyhedral

relaxation of R(x0) and thus a smaller subset.

Theorem 5 Suppose Assumption 1 holds and that for a fixed x0 ∈ X ,

M(x0) =
{
m ∈ Rk : there exists w ∈ Rq such that Am + Cw ≤ b

}
=
{
m ∈ Rk : Am ≤ b

}
,

for some A ∈ Rp×k, C ∈ Rp×q, b ∈ Rp, A ∈ Rp×k, and b ∈ Rp. Then for any µ ∈M ,

R′(x0) ≡
{
m ∈ Rk : Am ≤ b′

}
⊆ R′(x0) with probability one,

where
b′j = bj + max

m∈Rk

{
a>j (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
for all j = 1, . . . , p.

In some cases, e.g., optimizing a Lipschitz continuous function, deriving an explicit poly-
hedral representation of M(x0) is relatively straightforward, while in other cases, e.g., op-
timizing a convex function, it is challenging. Projecting out some or all components of w
has the potential to yield a less conservative subset SRPS

n , but can come at the cost of an
increase in the number of constraints implicitly describing M(x0). While classical techniques
for eliminating variables, e.g., Fourier-Motzkin elimination, can cause an explosion in the
number of constraints, many of them redundant, recent advances are more promising [Jing
et al., 2018].

Remark 1 Both SPS
n and SRPS

n exhibit an appealing, intuitive trait: given the same observed
simulation outputs, knowing additional functional properties of µ leads to a smaller subset.
That is, adding constraints that further shrink M(x0) results in more solutions being screened
out. This assertion is made mathematically precise in Theorems 6 and 7, which appear in
Appendix C.
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Table 1: Properties of the Plausible Screening and Relaxed Plausible Screening optimization
problems; k is the number of solutions in X, while p and q are the number of constraints and
extra variables in the description of M(x0) as in Assumption 1.

Subset Discrepancy Linear/Quadratic # Decision Variables # Constraints

SPS
n

d1
n Linear 2k + q p+ 2k
d2
n Quadratic k + q p

d∞n Linear k + q + 1 p+ 2k
dCRN
n Quadratic k + q p

SRPS
n All Linear q + 1 p

5.3 Optimization Problems

Checking whether µ̂ ∈ R′(x0) amounts to checking the feasibility of a system of linear
equations—namely, does there exist a w ∈ Rq such that Cw ≤ b′ − Aµ̂? This is equiva-
lent to determining the sign of the optimal value of a related linear program:

zn ≡ max
w,η

η s.t. Cw + η1p ≤ b′ − Aµ̂, (2)

where 1p is a p-vector of ones. The notation zn reflects the dependence of the parameters
of the optimization problem on the sample sizes; it is also convenient in the proofs of the
asymptotic guarantees delivered by SRPS

n . If zn ≥ 0, the solution x0 is included in SRPS
n ,

otherwise it is excluded.
On the other hand, constructing SPS

n requires evaluatingDn(x0, µ̂, Σ̂) ≡ min(m,w)∈P dn(m, µ̂, Σ̂).
Definition (2) therefore reduces the number of decision variables by roughly k, relative to
optimizing over P. If M(x0) can be expressed as a projection with few extra variables
(small q), then solving the problem in Definition (2) may be appreciably faster than solv-

ing min(m,w)∈P dn(m, µ̂, Σ̂), with greater savings as the size of the experimental set increases.
Furthermore, if a large number of solutions are to be screened, the computational savings
from working with SRPS

n can be substantial. Table 1 summarizes properties of the optimiza-
tion problems associated with screening solutions via the PS and RPS methods for the four
standardized discrepancies.

Remark 2 Example 1 featured an explicit polyhedral representation of M(x0), i.e., q = 0.
Thus, for Lipschitz performance functions, SRPS

n can be constructed without optimization by
simply checking whether Aµ̂ ≤ b′ for each solution.

6 Numerical Experiments

To illuminate the theoretical developments thus far in a more practical light, we implemented
the PS and RPS approaches on two problems. Both examples illustrate how prior knowledge
of functional properties can assist in screening out swathes of unacceptable solutions using
only a limited experimental set. Our first example in Section 6.1 illustrates how the behavior
of PS varies depending on the standardized discrepancy and demonstrates the advantages
over subset-selection procedures. In a much larger example described in Section 6.2, PS and

15



RPS screen out hundreds of thousands of solutions using an experimental set consisting of
only a hundred solutions.

We implemented our methods in MATLAB using the software’s built-in optimization
algorithms with their default settings: linprog (dual-simplex method) for linear programs
and quadprog (interior-point method) for quadratic programs. Source code is available
at https://github.com/daveckman/plausible-screening. We ran our experiments on
a high-performance computing cluster using eight cores on a compute node with 256GB of
RAM. For the first example, we ran independent macroreplications of our methods in parallel
to study the differences between methods, while for the larger second example, we classified
solutions in parallel to mirror a reasonable implementation in practice.

6.1 Newsvendor Problem

The first problem is a modified version of the classical newsvendor problem [Porteus, 1990].
Here, a vendor orders inventory of a given product in discrete quantities at a per-unit order
cost corder, observes a realization of stochastic demand ξ for a continuous quantity of the
product, and sells it at a per-unit sales price psales. For example, consider a gas-station
operator who orders gasoline in truckloads, but sells it in continuous quantities at the pump.
At the end of the sales period, leftover inventory is salvaged at a per-unit price psalvage and
unmet demand incurs a fixed per-unit cost of cshortage.

The vendor’s objective is to determine the order quantity that maximizes the expected
profit or, equivalently, minimizes the expected loss over the following sales period. For a
fixed realization of demand, ξ, the loss associated with an order quantity x is given by

Y (x, ξ) = corderx− psales min{ξ, x} − psalvage max{x− ξ, 0}+ cshortage max{ξ − x, 0}. (3)

The sample-path function Y (·, ξ) is convex in x provided psales ≥ psalvage. Furthermore,
Y (·, ξ) is γ-Lipschitz continuous with constant γ = max{psales + cshortage − corder, corder −
psalvage}. The expected loss function µ(x) := Eξ[Y (x, ξ)] inherits these properties from the
sample-path functions, as discussed in Section 3.1. In our experiments, we set corder = 3,
psales = 9, psalvage = 1, and cshortage = 1 with ξ being Weibull distributed with scale parameter
50 and shape parameter 2.

We considered a feasible region X = {1, 2, . . . , 200} and tested our methods by simulating
at 5 evenly spaced solutions (20, 60, 100, 140, 180) with a total sample size of 400 replications.
Though not presented in this article, we varied the experimental set and arrived at similar
conclusions as the ones presented in this article. We tested the PS method with the d1

n, d
2
n,

and d∞n standardized discrepancies and 1 − α = 0.95 when either exploiting the properties
that µ is convex or Lipschitz continuous with γ = 7. As a benchmark we applied the
Screen-to-the-Best (STB) subset-selection procedure of Nelson et al. [2001], which takes an
equal number of i.i.d. replications from all solutions in X and achieves both finite-sample
confidence (under the normality assumption) and asymptotic confidence. Given the same
total sample size of 400, the STB procedure took two replications at each feasible solution.
We ran 3000 macroreplications of each procedure.

With a small total sample size spread thinly over the solution space, the STB proce-
dure struggled to eliminate solutions, failing to screen out any solutions on 93.8% of the
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macroreplications and never screening out more than four solutions. In addition, each fea-
sible solution was retained on at least 99.5% of the macroreplications. Figure 1 shows the
empirical probability that individual solutions were included in SPS

n for d2
n; curves for d1

n and
d∞n were similar. In both the Lipschitz and convex cases, our method retained the optimal
solution, x∗ = 61, on all macroreplications, indicating conservatism. The two instances of
functional properties led to interesting features in the geometry of the retained solutions.
In the Lipschitz case, PS screened out solutions near clearly suboptimal solutions in the
experimental set, namely x = 40, x = 140, and x = 180, while in the convex case it screened
out those on the periphery of the feasible region. Because the probability of being in SPS

n

is neither 0 nor 1 for many solutions, the composition of SPS
n varied from macroreplication

to macroreplication even with 80 replications taken at each solution in X. The subset SPS
n

also differed from S(X), the subset of solutions that would be returned by an oracle who can
observe µ(X) without simulation error, implying that more solutions could be screened out
if the number of replications were increased.

(a) Lipschitz (b) Convex

Figure 1: Empirical probability of including individual solutions in SPS
n for the d2

n standard-
ized discrepancy with 80 replications taken at k = 5 equally spaced solutions when separately
using knowledge that the objective function is Lipschitz continuous or convex. The thin gray
line depicts the (shifted and scaled) objective function, the black dotted line indicates the
desired coverage of 1−α = 0.95, the black Xs indicate the solutions in the experimental set,
and the shaded blue regions indicate the solutions in S(X).

We also varied the total sample size, testing budgets of 400, 600, 1000, 2000, and 4000
replications. Figure 2 shows the average subset sizes for the four procedures when fixing k = 5
and increasing the total sample size. All methods returned smaller subsets on average when
taking more samples, with STB reducing the gap relative to PS. This is a consequence of the
limited inference PS can make, having simulated only a fixed experimental set. Specifically,
as the total sample size increases, SPS

n achieves S(X) consistency—the cardinality of which
is shown in Figure 2—while STB will eventually screen out all strictly suboptimal solutions.
Figure 2 demonstrates that knowing µ is convex leads to more powerful screening than
knowing a universal Lipschitz constant. In both cases, PS screened out anywhere from
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15–65% of the feasible solutions on average while simulating only 2.5% of them, and more
solutions could be screened out if the decision-maker were willing to accept more risk as
represented by the nominal confidence level. A separate analysis measuring the average
average-optimality gap of the solutions in the returned subsets yielded the same conclusions.

(a) Lipschitz (b) Convex

Figure 2: Average subset sizes for the STB procedure and PS with the d1
n, d

2
n, and d∞n

standardized discrepancies for k = 5 and different total sample sizes. The black dotted line
indicates the cardinality of S(X). All average sample sizes are individually precise to within
±1 with 95% confidence.

We also compared PS with the dCRN
n standardized discrepancy to a version of the STB

procedure that accommodates the use of CRN; see Section 3 of Nelson et al. [2001] for
STB details. We again took k = 5 with a total sample size of 400 replications and each
procedure generated its replications using CRN across solutions. Figure 3 shows the empirical
probability that individual solutions were included in the returned subset for STB with CRN
and PS, when exploiting knowledge that µ is Lipschitz continuous. The STB procedure with
CRN was more liberal in screening out solutions—returning an average subset of size 28—but
severely undercovered the optimal solution, retaining it on only 36% of the macroreplications.
This behavior is a consequence of the severe nonnormality of the outputs and the use of CRN
with a small sample size per solution. To be precise, the STB procedure with CRN obtains
two sample-path functions Y (·, ξ1) and Y (·, ξ2) and performs pairwise comparisons based on
the variance of Y (x, ξ1) − Y (x′, ξ1) and Y (x, ξ2) − Y (x′, ξ2) for solutions x, x′ ∈ X . From
Equation (3), it can be seen that for x, x′ /∈ [min{ξ1, ξ2},max{ξ1, ξ2}], the variance of the two
differences is zero, implying that any solution x0 /∈ [min{ξ1, ξ2},max{ξ1, ξ2}] will be screened
out. Since the mode of the Weibull distribution from which ξ1 and ξ2 is generated is about
35.4, the STB subsets are biased to the left of x∗ = 61.

PS with dCRN
n screened out similar solutions to its counterparts that use independent

sampling, but returned somewhat smaller subsets with an average size of 104 solutions. (In
the convex case, PS similarly returned smaller subsets when using CRN, with an average size
of 70.) This additional screening power should be weighed against the increased difficulty of
the underlying optimization problems, i.e., the need to solve quadratic programs with dense
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(a) STB with CRN (b) PS with dCRN
n

Figure 3: Empirical probability of including individual solutions in the STB subset and SPS
n

with the dCRN
n standardized discrepancy with 80 replications taken at k = 5 equally spaced

solutions when using knowledge that the objective function is Lipschitz continuous.

Hessian matrices.

6.2 Tandem Production Line Problem

The second problem is a resource-allocation problem for a production line with manufac-
turing blocking (e.g., buffers), adapted from Plambeck et al. [1996]. The decision-maker is
tasked with allocating discrete resources across five single-server stations arranged in a tan-
dem (serial) configuration. Each station processes products using a first-in first-out service
discipline. If Station i is allocated ai resources, its cycle (processing) time for a given product
is assumed to be exponentially distributed with rate parameter ρi = ρ̄i(1 + ai), where ρ̄i is
a base processing rate. We set ρ̄1 = 3, ρ̄2 = 5, ρ̄3 = 2, ρ̄4 = 5, and ρ̄5 = 1.

There is a buffer in front of each machine for products awaiting processing. If the buffer
is full, upstream stations can become blocked, whereas if it is empty, downstream stations
can become starved. We assume that there is an infinite supply of products immediately
available to process at Station 1 and an infinite-capacity buffer in front of that station, i.e.,
there is no external arrival process. The buffer capacities in front of Stations 2–5 are fixed
at 4, 6, 8, and 4, respectively.

The decision-maker’s objective is to allocate 50 resources to minimize the expected com-
pletion time of the 100th product. Under the assumptions above, the objective function is
convex in the allocation x ≡ (a1, a2, a3, a4, a5); see Section IV.B of Shanthikumar and Yao
[1989] for a complete derivation. We restrict attention to solutions that allocate all available
resources, i.e., a1 + a2 + a3 + a4 + a5 = 50, resulting in a total of 316, 251 feasible solutions.
Because of this tight constraint, the feasible region can be reduced to a four-dimensional
space.

Shanthikumar and Yao [1989] provide dynamic recursion equations for simulating the
completion times of all products, thereby avoiding the need to run a full discrete-event sim-
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ulation of the system. Even so, we consider this problem to be representative of large-scale
simulation-optimization problems for which simulating all feasible solutions is impractical,
but properties of the objective function may be known. In such cases, the available compu-
tational budget may permit only a small fraction of feasible solutions to be simulated. We
fixed a total sample size of 10,000 replications, which is enough to simulate one replication
from about 3% of the feasible solutions. We ran a single macroreplication of the PS and
RPS methods with d1

n, d
2
n, and d∞n . An experimental set consisting of k = 100 reasonably

space-filling solutions was determined via k-means clustering, hence 100 replications were
generated at each solution in X. For our formulation of convexity, the underlying optimiza-
tion problems for PS and RPS featured about 500 decision variables and 10,000 constraints.

Screening and timing results for each method are given in Table 2. All three versions
of PS screened out more than 60% of the feasible solutions while simulating only 0.03% of
them. The efficacy of RPS varied depending on the standardized discrepancy. For d∞n , the
same subset of solutions was returned by PS and RPS (i.e., SPS

n = SRPS
n ), yet for d1

n, no
solutions were screened out by RPS.

Table 2: Times and subset sizes for a single macroreplication on the tandem production line
problem.

Method and Discrepancy Time per Solution (s) |SPS
n | / |SRPS

n | Fraction Screened
PS with d1

n / RPS with d1
n 0.08 / 0.07 123,904 / 316,251 60.8% / 0%

PS with d2
n / RPS with d2

n 1.63 / 0.09 69,198 / 83,748 78.1% / 73.5%
PS with d∞n / RPS with d∞n 0.40 / 0.09 61,897 / 61,897 80.4% / 80.4%

Remark 3 In all of our experiments for PS and RPS with d∞n , we observed that on all
macroreplications, SPS

n = SRPS
n for both the Lipschitz and convex cases. Theorem 8 in

Appendix D formalizes this observation and proves that it holds with probability one for
the Lipschitz case. We were unable to prove an analogous result for the convex case.

All together, the results in Table 2 illustrate the diverse performance of the various
methods. PS with d2

n, which required the solution of quadratic programs, was the most
computationally intensive procedure. At the other extreme, PS with d1

n was roughly 20
times faster, but retained about twice as many solutions. The most effective and efficient
procedure was RPS with d∞n ; it removed over 80% of the feasible solutions with an overall
run time of about 8 core hours. As a practical recommendation, for either d2

n or d∞n , the
faster RPS method can be run first, followed by the PS method on the solutions in the
returned subset SRPS

n . This approach notably does not requiring splitting α to preserve the
statistical guarantee, as is sometimes the case with multi-stage selection procedures [Nelson
et al., 2001].

Figure 4 shows the sorted minimum standardized discrepancies of the feasible solutions,
Dn(x0, µ̂, Σ̂), relative to the cutoff, D, for the three versions of PS. The minimum stan-
dardized discrepancies were divided by the cutoffs and log-transformed to produce a clear,
standardized comparison. The flat stretches on the left-hand side of Figure 4 correspond
to solutions x0 for which there exists an x0-optimal convex function that coincides with
the best-fitting convex function (with respect to the standardized discrepancy) at solutions
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in X. More solutions can be screened out if a tighter statistically valid cutoff value were
used, especially for the d1

n standardized discrepancy—the potential gains for the d2
n and d∞n

standardized discrepancies are more limited.

Figure 4: Sorted logarithm of scaled minimum standardized discrepancies of feasible solutions
for a single macroreplication of PS with the d1

n, d
2
n, and d∞n standardized discrepancies. The

horizontal black dotted line differentiates solutions that are retained (below) and screened
out (above). The vertical black dotted lines indicate subset sizes.

Without an oracle for evaluating the true objective function, we took 500 replications at
each feasible solution (using CRN) and estimated the optimality gaps based on the sample
means. Figure 5 shows the optimality gaps for the feasible solutions, as well as those in SPS

n

and SRPS
n with d2

n. The results demonstrate that PS and RPS can screen out a large portion
of the inferior solutions, while retaining high-quality solutions.

7 Conclusions and Discussions

This article describes a novel but nascent framework for screening solutions whose per-
formances could be evaluated via stochastic simulation. In contrast to traditional subset-
selection procedures, our methods can screen out unsimulated solutions, making them ap-
pealing statistical inference techniques for large-scale simulation-optimization problems on
which such procedures are otherwise unworkable. For the Plausible Screening method, so-
lutions are screened by minimizing a standardized discrepancy—a function measuring the
distance between the sample means and a given vector—over a feasible region characterized
by known properties of the expected response function. For the Relaxed Plausible Screening
method, solutions are screened by checking the feasibility of a system of linear equations.
Both methods return subsets of solutions that attain typical statistical properties of confi-
dence and consistency.
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Figure 5: Histogram of the optimality gaps of solutions retained in SPS
n (blue), the optimality

gaps of additional solutions in SRPS
n (red), and the optimality gaps of all remaining solutions

(orange) for the d2
n standardized discrepancy.

Experimental results demonstrate the power of exploiting known functional properties,
with varying degrees of effectiveness for different standardized discrepancies. In the absence
of any specialized insight into the structure of the underlying optimization problems, we
recommend the d∞n standardized discrepancy as an efficient and powerful choice.

The proposed methodology can be extended well beyond the initial treatment in this
paper. Other, more sophisticated, forms of functional properties can also be incorporated,
such as estimated first-order information like stochastic gradients. One could also imagine
employing local function information, e.g. a local Lipschitz constant or local convexity.
Answering the question of how one acquires functional information is critical to convert this
idea into a practical tool. One direction could pair this methodology with existing tests for
functional properties [Juditsky and Nemirovski, 2002]. Another tact is to explicitly leverage
our minimal discrepancy to test for functional properties of expected response functions,
though we have not fully developed these ideas. We conjecture that there are many classes
of simulation problems with functional information available upon careful examination.

Another area of future research is how the choice of the experimental set, X, and the
number of simulation replications allocated to solutions in it, n, dictate the effectiveness of
our methods. There are many relevant practical questions that can be addressed: Given a
fixed budget, is it better to obtain few replications at many solutions or more replications at
fewer solutions? Given the known properties of µ, how should the solutions in X be spread
over X ? The answers to these questions might be informed by an asymptotic analysis of our
methods as k and n increase together.

Extending our methods to allow for sequential experimentation has great potential.
Adaptively identifying solutions in X at which to obtain more replications or new solu-
tions to add to X can lead to more efficient and powerful screening. However, preserving the
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statistical guarantees of such procedures will require careful attention.
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Appendices

A Derivations of M(x0) and S(X) for Examples 1 and 2

A.1 Derivations for Example 1

Portions of this proof are adapted from that of Theorem 5 of Plumlee and Nelson [2018].
For a given µ, let A = {x ∈ X : µ(x) ≤ minx′∈X µ(x′)} and suppose that µ is known to

be γ-Lipschitz. From the standard definition of a γ-Lipschitz function,

M = {m ∈ F : |m(x)−m(x′)| ≤ γ‖x− x′‖ for all x, x′ ∈ X}.

Adding the constraint that m(x0) ≤ m(x) for all x ∈ X , we have that

M(x0) = {m ∈ F : |m(x)−m(x′)| ≤ γ‖x− x′‖ for all x, x′ ∈ X
and m(x0) ≤ m(x) for all x ∈ X},

the set of γ-Lipschitz functions for which solution x0 is optimal.
We show that the projection of M(x0) onto Rk is given by

M(x0) = {m ∈ Rk : there exists m0 ∈ R such that

|mi −mj| ≤ γ‖xi − xj‖ for all i, j = 1, . . . , k

|mi −m0| ≤ γ‖xi − x0‖ for all i = 1, . . . , k

−mi + m0 ≤ 0 for all i = 1, . . . , k}.

We first prove that for any function m ∈ M(x0), there exists m ∈ M(x0) such that
mi = m(xi) for i = 1, . . . , k. Fix an arbitrary function m ∈M(x0) and define mi = m(xi) for
i = 0, 1, . . . , k. Since m is a γ-Lipschitz function, |mi −mj| = |m(xi)−m(xj)| ≤ γ‖xi − xj‖
for all i, j = 1, . . . , k and |mi−m0| = |m(xi)−m(x0)| ≤ γ‖xi− x0‖ for all i = 1, . . . , k. And
since m is an x0-optimal function, m0 = m(x0) ≤ m(xi) = mi for all i = 1, . . . , k. Hence,
m = (m1, . . . ,mk)

> ∈ M(x0).
We next prove that for any m ∈ M(x0), there exists a function m ∈ M(x0) such that

m(xi) = mi for i = 1, . . . , k. Fix an arbitrary vector m ∈ M(x0). From the definition of
M(x0), there exists an m0 ∈ R such that |mi − m0| ≤ γ‖xi − x0‖ for all i = 1, . . . , k and
m0 ≤ mi for all i = 1, . . . , k. Let

m+(x) = min
i=0,1,...,k

mi + γ‖x− xi‖,

i+(x) = arg min
i=0,1,...,k

mi + γ‖x− xi‖,

m−(x) = max
i=0,1,...,k

mi − γ‖x− xi‖, and

i−(x) = arg max
i=0,1,...,k

mi − γ‖x− xi‖,

for all x ∈ X and consider m(x) ≡ (m+(x) +m−(x))/2.
From the definition of M(x0), for any i = 0, 1, . . . , k, mi ≤ mj + γ‖xi − xj‖ for all j =

0, 1, . . . , k. Therefore m+(xi) = mi for all i = 0, 1, . . . , k. Likewise, since mi ≥ mj−γ‖xi−xj‖
for all j = 0, 1, . . . , k, it follows that m−(xi) = mi. Thus m(xi) = mi for all i = 0, 1, . . . , k.
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One can also verify that m is γ-Lipschitz. We first show that both m+ and m− are
γ-Lipschitz. For any x, x′ ∈ X ,

m+(x)−m+(x′) ≤ mi+(x′) + γ‖x− xi+(x′)‖ −mi+(x′) − γ‖x′ − xi+(x′)‖
≤ γ‖x− xi+(x′)‖ − γ‖x′ − xi+(x′)‖ ≤ γ‖x− x′‖,

and

m+(x)−m+(x′) ≥ mi+(x) + γ‖x− xi+(x)‖ −mi+(x) − γ‖x′ − xi+(x)‖
≥ γ‖x− xi+(x)‖ − γ‖x′ − xi+(x)‖ ≥ −γ‖x− x′‖.

Thus |m+(x)−m+(x′)| ≤ γ‖x− x′‖. Likewise,

m−(x)−m−(x′) ≤ mi−(x) − γ‖x− xi−(x)‖ −mi−(x) + γ‖x′ − xi−(x)‖
≤ −γ‖x− xi−(x)‖+ γ‖x′ − xi−(x)‖ ≤ γ‖x− x′‖,

and

m−(x)−m−(x′) ≥ mi−(x′) − γ‖x− xi−(x′)‖ −mi−(x′) + γ‖x′ − xi−(x′)‖
≥ −γ‖x− xi−(x′)‖+ γ‖x′ − xi−(x′)‖ ≥ −γ‖x− x′‖.

Thus |m−(x)−m−(x′)| ≤ γ‖x− x′‖. By substitution,

|m(x)−m(x′)| = 1

2
|m+(x) +m−(x)−m+(x′)−m−(x′)|

≤ 1

2
|m+(x)−m+(x′)|+ 1

2
|m−(x)−m−(x′)|

≤ 1

2
γ‖x− x′‖+

1

2
γ‖x− x′‖

= γ‖x− x′‖,

i.e., m is γ-Lipschitz.
We next demonstrate that m is x0-optimal. By construction, for any x ∈ X , m(xi+(x)) =

mi+(x) ≥ m0 = m(x0). In addition, from the definition of i−(x),

m(xi−(x))− γ‖x− xi−(x)‖ ≥ m(xi+(x))− γ‖x− xi+(x)‖.

Therefore

m(x) =
1

2

(
m(xi+(x)) + γ‖x− xi+(x)‖+m(xi−(x))− γ‖x− xi−(x)‖

)
≥ m(xi+(x)) ≥ m(x0).

Altogether, we have that m(xi) = mi for i = 1, . . . , k and m ∈M(x0).
These two implications prove that M(x0) is the projection of M(x0) onto Rk.
We next show that by projecting out m0, M(x0) can be explicitly expressed as

M(x0) =
{
m ∈ Rk : mi −mj ≤ γmin {‖xi − xj‖, ‖xi − x0‖} for all i, j = 1, . . . , k

}
.
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Applying Fourier-Motzkin elimination, we rearrange the inequalities defining M(x0) to
obtain

M(x0) = {m ∈ Rk : there exists m0 ∈ R such that
mi −mj ≤ γ‖xi − xj‖ for all i, j = 1, . . . , k

m0 ≥ mi − γ‖xi − x0‖ for all i = 1, . . . , k
m0 ≤ mi + γ‖xi − x0‖ for all i = 1, . . . , k
m0 ≤ mi for all i = 1, . . . , k}

= {m ∈ Rk : there exists m0 ∈ R such that
mi −mj ≤ γ‖xi − xj‖ for all i, j = 1, . . . , k

m0 ≥ mi − γ‖xi − x0‖ for all i = 1, . . . , k
m0 ≤ mi for all i = 1, . . . , k}

= {m ∈ Rk : mi −mj ≤ γ‖xi − xj‖ for all i, j = 1, . . . , k
mi − γ‖xi − x0‖ ≤ mj for all i, j = 1, . . . , k}

= {m ∈ Rk : mi −mj ≤ γmin {‖xi − xj‖, ‖xi − x0‖} for all i, j = 1, . . . , k}.

Lastly, we derive S(X). For any fixed µ ∈M ,

S(X) = {x0 ∈ X : µ(X) ∈ M(x0)}
= {x0 ∈ X : µ(xi)− µ(xj) ≤ γmin {‖xi − xj‖, ‖xi − x0‖} for all i, j = 1, . . . , k}
= {x0 ∈ X : µ(xi)− µ(xj) ≤ γ‖xi − x0‖ for all i, j = 1, . . . , k}
= {x0 ∈ X : µ(xi)− γ‖xi − x0‖ ≤ µ(xj) for all i, j = 1, . . . , k}

=

{
x0 ∈ X : max

i=1,...,k
µ(xi)− γ‖xi − x0‖ ≤ min

j=1,...,k
µ(xj)

}
,

where in the third equality we drop the constraints µ(xi) − µ(xj) ≤ γ‖xi − xj‖ since µ is
known to be γ-Lipschitz. �

A.2 Derivations for Example 2

For a given µ, let A = {x ∈ X : µ(x) ≤ minx′∈X µ(x′)} and suppose that µ is known to be
convex over X . To account for the possibility that X may be discrete, we adopt the following
definition of convexity: a function m is convex over X ⊆ Rd if at each x ∈ X , there exists
a subgradient ξ(x) ∈ Rd such that m(x′) ≥ m(x) − (x − x′)>ξ(x) for all x′ ∈ X [Murota,
1998]. In terms of our notation,

M =
{
m ∈ F : for all x ∈ X , there exists ξ(x) ∈ Rd such that

m(x)−m(x′) ≤ (x− x′)>ξ(x) for all x′ ∈ X
}
.

Adding the constraint that m(x0) ≤ m(x) for all x ∈ X , we have that

M(x0) =
{
m ∈ F : for all x ∈ X , there exists ξ(x) ∈ Rd such that

m(x)−m(x′) ≤ (x− x′)>ξ(x) for all x′ ∈ X and m(x0) ≤ m(x)
}
,

the set of convex functions for which solution x0 is optimal.
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We show that the projection of M(x0) onto Rk is given by

M(x0) = {m ∈ Rk : there exists m0 ∈ R and ξ1, . . . , ξk ∈ Rd such that

mi −mj − (xi − xj)>ξi ≤ 0 for all i, j = 1, . . . , k

mi −m0 − (xi − x0)>ξi ≤ 0 for all i = 1, . . . , k

−mi + m0 ≤ 0 for all i = 1, . . . , k}.

We first prove that for any function m ∈ M(x0), there exists m ∈ M(x0) such that
mi = m(xi) for i = 1, . . . , k. Fix an arbitrary function m ∈ M(x0) and define mi =
m(xi) for i = 0, 1, . . . , k. Since m ∈ M(x0), there exists ξ(x1), . . . , ξ(xk) ∈ Rd such that
m(xi) − m(x′) ≤ (xi − x′)>ξ(xi) for all x′ ∈ X . Let ξi = ξ(xi) for i = 1, . . . , k so that
mi − mj = m(xi) −m(xj) ≤ (xi − xj)>ξ(xi) = (xi − xj)>ξi for all j = 0, 1, . . . , k. Since m
is an x0-optimal function, m0 = m(x0) ≤ m(xi) = mi for all i = 1, . . . , k. Hence, for these
choices of m0 and ξ1, . . . , ξk, m = (m1, . . . ,mk)

> ∈ M(x0).
We next prove that for any m ∈ M(x0), there exists a function m ∈ M(x0) such that

m(xi) = mi for i = 1, . . . , k. Fix an arbitrary vector m ∈ M(x0). From the definition of M(x0),
there exists an m0 ∈ R and ξ1, . . . , ξk ∈ Rd such that for all i = 1, . . . , k, mi−mj ≤ (xi−xj)>ξi
for all j = 0, 1, . . . , k and m0 ≤ mi. Define ξ0 = 0d, a d-vector of all zeros, and consider

m(x) ≡ max
i=0,1,...,k

mi + (x− xi)>ξi,

for all x ∈ X . For i = 1, . . . , k,

m(xi) = max
j=0,1,...,k

mj + (xi − xj)>ξj = mi,

from the first and second sets of inequalities describing M(x0). Since the function m is the
maximum of k+1 convex functions, it is convex. Also, m is x0-optimal because for all x ∈ X ,

m(x) = max
i=0,1,...,k

mi + (x− xi)>ξi ≥ m0 + (x− x0)>0d = m0.

Altogether, we have that m(xi) = mi for i = 1, . . . , k and m ∈M(x0).
These two implications prove that M(x0) is the projection of M(x0) onto Rk.
By definition, for any fixed µ ∈M ,

S(X) = {x0 ∈ X : µ(X) ∈ M(x0)}
=
{
x0 ∈ X : there exists m0 ∈ R and ξ1, . . . , ξk ∈ Rd such that

− (xi − xj)>ξi ≤ −µ(xi) + µ(xj) for all i, j = 1, . . . , k

−m0 − (xi − x0)>ξi ≤ −µ(xi) for all i = 1, . . . , k

m0 ≤ µ(xi) for all i = 1, . . . , k} . �

B Derivations for Relaxed Plausible Screening

In this appendix, we verify the equations stated in Section 5.1 when describing how we offset
the right-hand-side vector b that appears in Assumption 1. These equations are rewritten
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below in terms of a general vector v = (v1, . . . , vk)
>:

max
m∈Rk

{
v>(µ̂−m) : d1

n(m, µ̂, Σ̂) ≤ D1
}

= D1 max
i=1,...,k

σ̂i√
ni
|vi|, (4)

max
m∈Rk

{
v>(µ̂−m) : d2

n(m, µ̂, Σ̂) ≤ D2
}

=

√√√√D2

k∑
i=1

σ̂2
i

ni
v2
i , (5)

max
m∈Rk

{
v>(µ̂−m) : d∞n (m, µ̂, Σ̂) ≤ D∞

}
= D∞

k∑
i=1

σ̂i√
ni
|vi|, and (6)

max
m∈Rk

{
v>(µ̂−m) : dCRN

n (m, µ̂, Σ̂) ≤ DCRN
}

=

√
DCRN

n
v>Σ̂v. (7)

In the proofs that follow, we define

c ≡ (
√
n1/σ̂1, . . . ,

√
nk/σ̂k)

>
and c ≡ (σ̂1/

√
n1, . . . , σ̂k/

√
nk)
>
,

and let y� z denote the element-wise multiplication of vectors y, z ∈ Rk. Clearly, c� c = 1k

where 1k is a k-vector of all ones. For p ≥ 1, let ‖y‖p ≡
(∑k

i=1 |yi|p
)1/p

denote the p-norm

of a vector y ∈ Rk. We will make use of the following well-known result in mathematical
optimization; see Appendix A.1.6 of Boyd and Vandenberghe [2004].

Lemma 2 (Dual norm of p-norm) For any y ∈ Rk and p ≥ 1,

max
z∈Rk

{
y>z : ‖z‖p ≤ 1

}
= ‖y‖q where q satisfies 1/p+ 1/q = 1.

We are now prepared to prove Equations (4)–(6).

B.1 Proof of Equation (4)

Fix an arbitrary v ∈ Rk. Then

max
m∈Rk

{
v>(µ̂−m) : d1

n(m, µ̂, Σ̂) ≤ D1
}

= max
m∈Rk

{
v>(µ̂−m) :

k∑
i=1

√
ni
σ̂i
|µ̂i −mi| ≤ D1

}

= max
m∈Rk

{
v>(µ̂−m) :

k∑
i=1

1

D1

√
ni
σ̂i
|µ̂i −mi| ≤ 1

}

= max
m∈Rk

{
v>(µ̂−m) :

∥∥∥∥c� (µ̂−m)

D1

∥∥∥∥
1

≤ 1

}
= max

m∈Rk

{(
D1 (v � c)

)>(c� (µ̂−m)

D1

)
:

∥∥∥∥c� (µ̂−m)

D1

∥∥∥∥
1

≤ 1

}
=
∥∥D1 (v � c)

∥∥
∞

= D1 max
i=1,...,k

σ̂i√
ni
|vi|. �
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B.2 Proof of Equation (5)

Fix an arbitrary v ∈ Rk. Then

max
m∈Rk

{
v>(µ̂−m) : d2

n(m, µ̂, Σ̂) ≤ D2
}

= max
m∈Rk

{
v>(µ̂−m) :

k∑
i=1

ni
σ̂2
i

(µ̂i −mi)
2 ≤ D2

}

= max
m∈Rk

{
v>(µ̂−m) :

k∑
i=1

1

D2

ni
σ̂2
i

(µ̂i −mi)
2 ≤ 1

}

= max
m∈Rk

{
v>(µ̂−m) :

∥∥∥∥c� (µ̂−m)√
D2

∥∥∥∥
2

≤ 1

}
= max

m∈Rk

{(√
D2 (v � c)

)>(c� (µ̂−m)√
D2

)
:

∥∥∥∥c� (µ̂−m)√
D2

∥∥∥∥
2

≤ 1

}
=
∥∥∥√D2 (v � c)

∥∥∥
2

=

√√√√D2

k∑
i=1

σ̂2
i

ni
v2
i . �

B.3 Proof of Equation (6)

Fix an arbitrary v ∈ Rk. Then

max
m∈Rk

{
v>(µ̂−m) : d∞n (m, µ̂, Σ̂) ≤ D∞

}
= max

m∈Rk

{
v>(µ̂−m) : max

i=1,...,k

√
ni
σ̂i
|µ̂i −mi| ≤ D∞

}
= max

m∈Rk

{
v>(µ̂−m) : max

i=1,...,k

1

D∞

√
ni
σ̂i
|µ̂i −mi| ≤ 1

}
= max

m∈Rk

{
v>(µ̂−m) :

∥∥∥∥c� (µ̂−m)

D∞

∥∥∥∥
∞
≤ 1

}
= max

m∈Rk

{
(D∞ (v � c))>

(
c� (µ̂−m)

D∞

)
:

∥∥∥∥c� (µ̂−m)

D∞

∥∥∥∥
∞
≤ 1

}
= ‖D∞ (v � c)‖1

= D∞
k∑
i=1

σ̂i√
ni
|vi|.�

For Equation (7) we require another dual norm result. For a k×k positive definite matrix

A, let ‖y‖A ≡
√
y>Ay denote the norm of a vector y ∈ Rk induced by the inner product

〈y, z〉A ≡ y>Az.

Lemma 3 For any y ∈ Rk and A ∈ Rk×k positive definite,

max
z∈Rk

{
y>z : ‖z‖A ≤ 1

}
= ‖y‖A−1 .
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B.4 Proof of Lemma 3

The Cholesky decomposition allows us to write A = LL> for some k × k lower-diagonal
matrix L. Note that for Cholesky decomposition, there are only nonzero entries along the
diagonal of L and thus it is invertible. Therefore,

max
z∈Rk

{
y>z : ‖z‖A ≤ 1

}
= max

z∈Rk

{
y>z :

√
z>Az ≤ 1

}
= max

z∈Rk

{
y>z :

√
z>LL>z ≤ 1

}
= max

z∈Rk

{
y>z : ‖L>z‖2 ≤ 1

}
= max

z∈Rk

{
y>(L>)−1L>z : ‖L>z‖2 ≤ 1

}
= max

z∈Rk

{
(L−1y)>L>z : ‖L>z‖2 ≤ 1

}
= ‖L−1y‖2

=
√

y>(L−1)>L−1y

=
√

y>A−1y

= ‖y‖A−1 . �

B.5 Proof of Equation (7)

Fix an arbitrary v ∈ Rk. Then

max
m∈Rk

{
v>(µ̂−m) : dCRN

n (m, µ̂, Σ̂) ≤ DCRN
}

= max
m∈Rk

{
v>(µ̂−m) : n(µ̂−m)>Σ̂−1(µ̂−m) ≤ DCRN

}
= max

m∈Rk

{
v>(µ̂−m) :

1

DCRN
n(µ̂−m)>Σ̂−1(µ̂−m) ≤ 1

}
= max

m∈Rk

{
v>(µ̂−m) :

∥∥∥∥√ n

DCRN
(µ̂−m)

∥∥∥∥
Σ̂−1

≤ 1

}

= max
m∈Rk


(√

DCRN

n
v

)>(√
n

DCRN
(µ̂−m)

)
:

∥∥∥∥√ n

DCRN
(µ̂−m)

∥∥∥∥
Σ̂−1

≤ 1


=

∥∥∥∥∥
√

DCRN

n
v

∥∥∥∥∥
Σ̂

=

√
DCRN

n
v>Σ̂v. �
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C Proofs of Theoretical Results

C.1 Proof of Conditions (C1)–(C4) for the d2
n standardized dis-

crepancy with D2

Condition (C1) is clearly satisfied for

d2
n(m, µ̂, Σ̂) =

k∑
i=1

ni
σ̂2
i

(µ̂i −mi)
2 .

Under the normality assumption for Setting (S1), (µ̂i − µ(xi))/(σ̂i/
√
ni) ∼ tni−1 for

i = 1, . . . , k, hence

d2
n(µ(X), µ̂, Σ̂) =

k∑
i=1

ni
σ̂2
i

(µ̂i − µ(xi))
2 d

=
k∑
i=1

F1,ni−1.

where tν denotes a t-distributed random variable with ν degrees of freedom and Fν1,ν2 de-
notes an F -distributed random variables with numerator degrees of freedom ν1 and denom-
inator degrees of freedom ν2. The described value of D2 is precisely the 1 − α quantile of
d2
n(µ(X), µ̂, Σ̂), i.e., Condition (C2) is satisfied.

By the Central Limit Theorem and the Continuous Mapping Theorem, (µ̂i−µ(xi))
2/(σ̂2

i /ni) ∼
χ2

1 as ni →∞ for i = 1, . . . , k where χ2
ν denotes a chi-squared random variable with ν degree

of freedom. From our construction, D2 converges to the 1 − α quantile of a χ2
k random

variable. Therefore,

P
(
d2
n(µ(X), µ̂, Σ̂) ≤ D2

)
→ 1− α as min

i=1,...,k
ni →∞,

satisfying Condition (C3).
Lastly, we have that

max
m∈Rk

{
‖µ̂−m‖ : d2

n(m, µ̂, Σ̂) ≤ D2
}

= max
m∈Rk


√√√√ k∑

i=1

(µ̂i −mi)
2 :

k∑
i=1

ni
σ̂2
i

(µ̂i −mi)
2 ≤ D2


=

√√√√max
m∈Rk

{
k∑
i=1

(µ̂i −mi)
2 :

k∑
i=1

ni
σ̂2
i

(µ̂i −mi)
2 ≤ D2

}

≤

√√√√ k∑
i=1

max
mi∈R

{
(µ̂i −mi)

2 :
ni
σ̂2
i

(µ̂i −mi)
2 ≤ D2

}

=

√√√√D2

k∑
i=1

σ̂2
i

ni

w.p.1→ 0 as min
i=1,...,k

ni →∞,

since σ̂2
i

w.p.1→ σ2
i <∞ and D2 converges to a constant. By Condition (C1),

max
m∈Rk

{
‖µ̂−m‖ : d2

n(m, µ̂, Σ̂) ≤ D2
}
≥ 0 with probability 1.
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It follows that

max
m∈Rk

{
‖µ̂−m‖ : d2

n(m, µ̂, Σ̂) ≤ D2
}

w.p.1→ 0 as min
i=1,...,k

ni →∞,

satisfying Condition (C4). �

C.2 Proof of Theorem 1

Fix arbitrary µ ∈ M . For any x0 ∈ A, it follows by definition that µ ∈ M(x0), hence
µ(X) ∈ M(x0). Then for any fixed n for which mini=1,...,k ni is sufficiently large,

P(x0 ∈ SPS
n ) = P

(
Dn(x0, µ̂, Σ̂) ≤ D

)
= P

(
min

m∈M(x0)
dn(m, µ̂, Σ̂) ≤ D

)
≥ P

(
dn(µ(X), µ̂, Σ̂) ≤ D

)
.

By Condition (C2),

P
(
dn(µ(X), µ̂, Σ̂) ≤ D

)
= 1− α,

implying that SPS
n achieves finite-sample confidence. Similarly, by Condition (C3),

P
(
dn(µ(X), µ̂, Σ̂) ≤ D

)
→ 1− α as min

i=1,...,k
ni →∞,

implying that P(x0 ∈ SPS
n ) & 1 − α as mini=1,...,k ni → ∞. Hence SPS

n achieves asymptotic
confidence. �

C.3 Proof of Theorem 2

The result follows immediately from Corollary 1 and Theorem 4. For any µ ∈ M and
x0 /∈ S(X),

P(x0 ∈ SPS
n ) ≤ P(x0 ∈ SRPS

n )→ 0 as min
i=1,...,k

ni →∞. �

C.4 Proof of Lemma 1

Fix a suitable M and A satisfying Assumption 1, a performance function µ ∈M , a solution
x0 ∈ X , and a vector m̃ ∈ R(x0). Consider the vector m∗ ≡ arg minm∈M(x0) dn(m, m̃, Σ̂), for

which dn(m
∗, m̃, Σ̂) ≤ D, by definition of R(x0). Since m∗ ∈ M(x0), there is an associated

w∗ ∈ Rq such that Am∗ + Cw∗ ≤ b. Then for this w∗,

Am̃ + Cw∗ = A(m̃−m∗) + Am∗ + Cw∗ ≤ A(m̃−m∗) + b ≤ b′,

since for each j = 1, . . . p,

aj(m̃−m∗) + bj ≤ max
m∈Rk

{
a>j (m̃−m) : dn(m, m̃, Σ̂) ≤ D

}
+ bj = b′j.

Therefore m̃ ∈ R′(x0) and all together R(x0) ⊆ R′(x0) with probability one. �
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C.5 Proof of Corollary 1

Fix a suitable M and A satisfying Assumption 1, a performance function µ ∈ M , and a
solution x0 ∈ SPS

n . From the definition of SPS
n , µ̂ ∈ R(x0) and by Lemma 1, µ̂ ∈ R′(x0). Thus

x0 ∈ SRPS
n . Since the choice of x0 was arbitrary, SPS

n ⊆ SRPS
n with probability one. �

C.6 Proof of Theorem 3

The result follows immediately from Corollary 1 and Theorem 1. For any µ ∈ M and
x0 ∈ A,

P(x0 ∈ SRPS
n ) ≥ P(x0 ∈ SPS

n ) ≥ 1− α,

and
P(x0 ∈ SRPS

n ) ≥ P(x0 ∈ SPS
n ) & 1− α as min

i=1,...,k
ni →∞.

Thus SRPS
n achieves finite-sample and asymptotic confidence. �

C.7 Proof of Theorem 4

Fix arbitrary µ ∈M . For any x0 /∈ S(X), it follows by definition that µ(X) /∈ M(x0), meaning
that there does not exist a w ∈ Rq s.t. Cw ≤ b − Aµ(X). By Farkas’ Lemma, the optimal
value

z∗ ≡ min
y

(b− Aµ(X))>y s.t. C>y = 0 and y ∈ Rp
+ (8)

is strictly negative, where Rp
+ denotes the nonnegative orthant of Rp. Thus, there exists

ȳ ∈ Rp
+ such that C>ȳ = 0 and (b− Aµ(X))>ȳ < 0.

Recall that an arbitrary solution x0 ∈ X belongs to SRPS
n if and only if there exists a

w ∈ Rq such that Cw ≤ b′ − Aµ̂. As discussed in Section 5.3, this is equivalent to the event
that zn ≥ 0 where

zn ≡ max
w,η

η s.t. Cw + η1p ≤ b′ − Aµ̂.

By Farkas’ Lemma, it is also equivalent to the event that z′n ≥ 0 where

z′n ≡ min
y

(b′ − Aµ̂)>y s.t. CTy = 0 and y ∈ Rp
+. (9)

We proceed to show that the probability of the event that z′n ≥ 0 goes to zero as the minimum
sample size increases to infinity.

By the Cauchy-Schwarz Inequality and Condition (C4),

b′j = bj + max
m∈Rk

{
a>j (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
≤ bj + ‖aj‖max

m∈Rk

{
‖µ̂−m‖ : dn(m, µ̂, Σ̂) ≤ D

}
a.s.→ bj as min

i=1,...k
ni →∞,

for all j = 1, . . . , p. Then since b′j ≥ bj, we have that b′j
a.s.→ bj for all j = 1, . . . , p. In addition,

µ̂
a.s.→ µ(X) as mini=1,...,k ni →∞. The objective function in Definition (9) therefore converges
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pointwise to that in Definition (8), while the feasible regions are the same: {y ∈ Rp
+ : C>y =

0}.
For the optimization problem in Definition (9), consider the feasible solution y0 = 0p,

whose associated objective function value is zero. This implies that to have x0 ∈ SRPS
n , we

must have z′n = 0 and therefore y0 would have to be an optimal solution to the optimization
problem in Definition (9). The probability of this event goes to zero as mini=1,...,k ni → ∞
because (b′−Aµ̂)>ȳ

a.s.→ (b−Aµ(X))>ȳ < 0, implying that the probability that ȳ has a better
objective function value than y0 goes to one.

Combining these results,

P(x0 ∈ SRPS
n ) = P(zn ≥ 0)

= P(z′n ≥ 0)

= P(y0 = 0p is an optimal solution to the problem in Definition (9))

→ 0 as min
i=1,...,k

ni →∞. �

C.8 Proof of Theorem 5

Fix a suitable M , µ ∈M , andA satisfying Assumption 1 and an arbitrary x0 ∈ X . Theorem
4.10 of Nemhauser and Wolsey [1999] implies that aj = νjA and bj = νjb for j = 1, . . . , p
where ν1, . . . , νp are the extreme rays of Q ≡ {ν ∈ Rp

+ : νC = 0}. Since R′(x0) = projm(P′)
where P′ ≡

{
(m,w) ∈ Rk × Rq : Am + Cw ≤ b′

}
, the same result also implies that

R′(x0) =
{
m ∈ Rk : Am ≤ b

}
,

where bj = νjb
′.

Fix arbitrary m̃ ∈ R′(x0). For all j = 1, . . . , p,

ajm̃ ≤ b′j

= bj + max
m∈Rk

{
a>j (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
= νjb+ max

m∈Rk

{
νjA(µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
= νjb+ max

m∈Rk

{
p∑
`=1

νj`a
>
` (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}

≤ νjb+

p∑
`=1

max
m∈Rk

{
νj`a

>
` (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
= νjb+

p∑
`=1

νj` max
m∈Rk

{
a>` (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
= νjb

′ = bj.

The third-to-last equality follows from the fact that νj ∈ Rp
+ for all j = 1, . . . , p. Therefore

m̃ ∈ R′(x0) and since m̃ was arbitrary, R′(x0) ⊆ R′(x0) with probability one. �
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Theorem 6 For any M ,M ∈ F with M ⊆M , define

M(x0) ≡
{
m ∈ Rk : there exists m ∈M such that x0 ∈ A(m) and m(X) = m

}
.

Then
SPS

n ≡
{
x0 ∈ X : Dn(x0, µ̂, Σ̂) ≤ D

}
⊆ SPS

n with probability one,

where
Dn(x0, µ̂, Σ̂) ≡ min

m∈M(x0)
dn(m, µ̂, Σ̂).

C.9 Proof of Theorem 6

Fix arbitrary M ,M ∈ F with M ⊆ M , arbitrary µ ∈ M , and arbitrary A. As the
projections of intersections of function spaces M(x0) ⊆ M(x0). Hence for any solution x0 ∈ X ,

Dn(x0, µ̂, Σ̂) = min
m∈M(x0)

dn(m, µ̂, Σ̂) ≥ min
m∈M(x0)

dn(m, µ̂, Σ̂) = Dn(x0, µ̂, Σ̂),

implying that

SPS
n =

{
x0 ∈ X : Dn(x0, µ̂, Σ̂) ≤ D

}
⊆
{
x0 ∈ X : Dn(x0, µ̂, Σ̂) ≤ D

}
= SPS

n with probability one. �

Theorem 7 For any M ,M ∈ F with M ⊆M , define

P ≡
{

(m,w, z) ∈ Rk × Rq × Rq : Am + Cw ≤ b and Am + Cw + Ez ≤ b
}
,

for some A ∈ Rp×k, C ∈ Rp×q, E ∈ Rp×q, and b ∈ Rp. Then

SRPS
n ≡

{
x0 ∈ X : there exists (w, z) ∈ Rq × Rq such that Aµ̂+ Cw ≤ b′ and Aµ̂+ Cw + Ez ≤ b′

}
⊆ SRPS

n with probability one,

where
b′j = bj + max

m∈Rk

{
a>j (µ̂−m) : dn(m, µ̂, Σ̂) ≤ D

}
for all j = 1, . . . , p,

where aj is the jth row of A, expressed as a column vector.

C.10 Proof of Theorem 7

Fix arbitrary M ,M ∈ F with M ⊆ M , arbitrary µ ∈ M , arbitrary A, and a solution
x0 ∈ SRPS

n . There exists an associated w∗ ∈ Rq and z∗ ∈ Rq such that Aµ̂ + Cw∗ ≤ b′

and Aµ̂ + Cw∗ + Ez∗ ≤ b′. Since, Aµ̂ + Cw∗ ≤ b′, it follows that µ̂ ∈ R′(x0), implying that
x0 ∈ SRPS

n . Because the choice of x0 was arbitrary, SRPS
n ⊆ SRPS

n with probability one. �
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D Tightness of SRPS
n for d∞n Standardized Discrepancy

Theorem 8 states that for the problem of minimizing a Lipschitz continuous function, Plau-
sible Screening and Relaxed Plausible Screening return the same subset of solutions when
using the d∞n standardized discrepancy.

Theorem 8 For any X , X ⊆ X , and fixed 0 < γ <∞, let

M = {m ∈ F : |m(x)−m(x′)| ≤ γ‖x− x′‖ for all x, x′ ∈ X},

and for any m ∈M let A(m) = {x ∈ X : m(x) ≤ minx′∈X m(x′)}, so that for any x0 ∈ X ,

M(x0) =
{
m ∈ Rk : mi −mj ≤ γmin {‖xi − xj‖, ‖xi − x0‖} for all i, j = 1, . . . , k

}
.

Then for the d∞n (m, µ̂, Σ̂) standardized discrepancy, SPS
n = SRPS

n with probability one.

D.1 Proof of Theorem 8

Our approach to establishing that SPS
n ≡ {x0 ∈ X : µ̂ ∈ R(x0)} equals SPS

n ≡ {x0 ∈ X : µ̂ ∈
R′(x0)} with probability one is to show that for each x0 ∈ X , R(x0) = R′(x0) with probability
one.

Fix X , X, and an arbitrary x0 ∈ X and Σ̂. For the d∞n standardized discrepancy,

R(x0) =
{
m ∈ Rk : D∞n (x0,m, Σ̂) ≤ D∞

}
=

{
m ∈ Rk : min

m̃∈M(x0)
max
i=1,...,k

√
ni
σ̂i
|mi − m̃i| ≤ D∞

}
=

{
m ∈ Rk : there exists m̃ ∈ M(x0) such that max

i=1,...,k

√
ni
σ̂i
|mi − m̃i| ≤ D∞

}
=
{
m ∈ Rk : there exists (m̃,w) ∈ Rk × Rq such that Am̃ + Cw ≤ b and

max
i=1,...,k

√
ni
σ̂i
|mi − m̃i| ≤ D∞

}
(10)

=

{
m ∈ Rk : there exists (∆,w) ∈ Rk × Rq such that

Am + Cw + A∆ ≤ b and

√
ni
σ̂i
|∆i| ≤ D∞ for all i = 1, . . . , k

}
, (11)

and

R′(x0) =
{
m ∈ Rk : there exists w ∈ Rq such that Am + Cw ≤ b′

}
=
{
m ∈ Rk : there exists w ∈ Rq such that Am + Cw ≤ b+ D∞a

}
, (12)

where a = (a1, . . . , ap) and

aj =
k∑
i=1

σ̂i√
ni
|aji| for all j = 1, . . . , p,
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and p is the number of rows in A and C.
We proceed to show that R(x0) = R′(x0) for this fixed Σ̂ by projecting out ∆ from

Equation (11). We use Fourier-Motzkin elimination to iteratively project out the variables
∆1, . . . ,∆k, in any order, leading to an expression for R(x0) in terms of only m and w that
matches Equation (12).

Before carrying out the Fourier-Motzkin elimination procedure, we introduce some useful
notation. For a given vector v ∈ Rk and subset I ⊆ {1, . . . , k}, let v(I) represent the
truncated vector whose elements correspond to indices in I, i.e., the components with indices
in {1, . . . , k}\I have been removed. And for a given subset O ⊆ {1, . . . , k}, let aj(O) =∑

i∈O(σ̂i/
√
ni)|aji| for all j = 1, . . . , p. Furthermore, for a given index i∗ = 1, . . . , k, define

J +(i∗) ≡ {j = 1, . . . , p : aji∗ > 0}, J −(i∗) ≡ {j = 1, . . . , p : aji∗ < 0}, and J 0(i∗) ≡ {j =
1, . . . , p : aji∗ = 0}. The subsets J +(i∗), J −(i∗), and J 0(i∗) form a partition of the indices
{1, . . . , p} of the constraints Am+Cw+A∆ ≤ b, classifying those for which ∆i∗ has a positive,
negative, or zero coefficient, respectively. When carrying out Fourier-Motzkin elimination
to project out ∆i∗ , these subsets will characterize which constraints can be re-expressed as
lower bounds and upper bounds on ∆i∗ .

We prove via induction that iteratively projecting out the variables ∆1, . . . ,∆k from
Equation (11) (in any order) using the Fourier-Motzkin elimination procedure will produce
the desired result. For a more concise presentation, we find it easier to verify the two steps of
an inductive proof in the opposite order: We first show a recursion for the case of projecting
out an arbitrary variable ∆i∗ during the repeated procedure, assuming that after having
projected out a subset of components of ∆, the current set of constraints describing R(x0)
has a particular representation. We then show that for the base case, projecting out the first
of the k variables yields that same representation of constraints assumed in the inductive
result.

Suppose we are on an arbitrary iteration of the Fourier-Motzkin elimination procedure
where a subset of components of ∆ have been projected out. Let O denote the subset
of indices of these components and let I = {1, . . . , k}\{O} denote the set of indices of
components of ∆ that have yet to be projected out. We assume that at this stage in the
procedure, R(x0) can be represented as

R(x0) =

{
m ∈ Rk : there exists (∆(I),w) ∈ R|I| × Rq such that

a>j m + c>j w + a>j (I)∆(I) ≤ bj + D∞aj(O) for all j = 1, . . . , p and
√
ni
σ̂i
|∆i| ≤ D∞ for all i ∈ I

}
. (13)

Suppose that for some i∗ ∈ I, ∆i∗ is the next variable to be projected out of Equation (13).
Remove i∗ from I, i.e, set I ← I\{i∗}. With this updated definition of I, we rearrange the
constraints in Equation (13) pertaining to ∆i∗ into either upper bounds

∆i∗ ≤
bj+ + D∞aj+(O)− a>j+m− c>j+w − aj+(I)>∆(I)

aj+i∗
for all j+ ∈ J +(i∗)

∆i∗ ≤
σ̂i∗√
ni∗

D∞ (14)
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or lower bounds

bj− + D∞aj−(O)− a>j−m− c>j−w − aj−(I)>∆(I)

aj−i∗
≤ ∆i∗ for all j− ∈ J −(i∗)

− σ̂i∗√
ni∗

D∞ ≤ ∆i∗ . (15)

Those constraints in Equation (13) that do not feature ∆i, namely

a>j m + c>j w + a>j (I)∆(I) ≤ bj + D∞aj(O) for all j ∈ J 0(i∗) (16)
√
ni
σ̂i
|∆i| ≤ D∞ for all i ∈ I,

are temporarily set aside, but will be included in the representation of R(x0) at the end of
the iteration.

Fourier Motzkin elimination replaces Constraints (14) and (15) with the constraints

− σ̂i∗√
ni∗

D∞ ≤
bj+ + D∞aj+(O)− a>j+m− c>j+w − aj+(I)>∆(I)

aj+i∗
for all j+ ∈ J +(i∗) (17)

bj− + D∞aj−(O)− a>j−m− c>j−w − aj−(I)>∆(I)

aj−i∗
≤ σ̂i∗√

ni∗
D∞ for all j− ∈ J −(i∗) (18)

bj− + D∞aj−(O)− a>j−m− c>j−w − aj−(I)>∆(I)

aj−i∗
≤
bj+ + D∞aj+(O)− a>j+m− c>j+w − aj+(I)>∆(I)

aj+i∗

for all j+ ∈ J +(i∗) and j− ∈ J −(i∗).
(19)

Due to the positive sign of aj+i∗ and the negative sign of aj−i∗ , Constraints (17) and (18)
can be succinctly written as

a>j m + c>j w + aj(I)>∆(I) ≤ bj + D∞aj(O ∪ {i∗}) for all j ∈ J +(i∗) ∪ J −(i∗).

We next show that Constraints (19) are redundant for the setup of minimizing a Lipschitz
continuous function. Fix an arbitrary j+ ∈ J +(i∗) and j− ∈ J −(i∗). From the formulation

M(x0) =
{
m ∈ Rk : mi −mj ≤ γmin {‖xi − xj‖, ‖xi − x0‖} for all i, j = 1, . . . , k

}
,

the corresponding constraint among Constraints (19) can be expressed as

−γmin{‖x` − xi∗‖, ‖x` − x0‖} − D∞
σ̂`√
n`

1{` ∈ O}+ m` −mi∗ + ∆`1{` ∈ I}

≤ γmin{‖xi∗ − x`′‖, ‖xi∗ − x0‖}+ D∞
σ̂`′√
n`′

1{`′ ∈ O} −mi∗ + m`′ + ∆`′1{`′ ∈ I} (20)
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for some `, `′ ∈ {1, . . . , k}\{i∗}. Inequality (20) reduces to

m` −m`′ + ∆`1{` ∈ I} −∆`′1{`′ ∈ I}
≤γmin{‖x` − xi∗‖, ‖x` − x0‖}+ γmin{‖xi∗ − x`′‖, ‖xi∗ − x0‖}

+ D∞
σ̂`√
n`

1{` ∈ O}+ D∞
σ̂`′√
n`′

1{`′ ∈ O}. (21)

We next show that Inequality (21) is implied by a constraint

a>j∗m + c>j∗w + aj∗(I)>∆(I) ≤ bj∗ + D∞aj∗(O ∪ {i∗}) (22)

for some j∗ ∈ J 0(i∗), i.e., one of the constraints in (16). In particular, we consider j∗

corresponding to the constraint

m` −m`′ ≤ γmin{‖x` − x`′‖, ‖x` − x0‖}

in the formulation of M(x0). For this choice of j∗, Constraint (22) can be written as

m` −m`′ + ∆`1{` ∈ I} −∆`′1{`′ ∈ I} ≤ γmin{‖x` − x`′‖, ‖x` − x0‖}

+ D∞
σ̂`√
n`

1{` ∈ O}+ D∞
σ̂`′√
n`′

1{`′ ∈ O}. (23)

By the triangle inequality,

γmin{‖x`− x`′‖, ‖x`− x0‖} ≤ γmin{‖x`− xi∗‖, ‖x`− x0‖}+ γmin{‖xi∗ − x`′‖, ‖xi∗ − x0‖},

hence Constraint (23) implies Constraint (21). Constraint (21) is therefore redundant and
can be dropped from the formulation.

Since the choice of j+ and j− were arbitrary, we have altogether that

R(x0) =

{
m ∈ Rk : there exists (∆(I),w) ∈ R|I| × Rq such that

a>j m + c>j w + a>j (I)∆(I) ≤ bj + D∞aj(O) for all j ∈ J 0(i∗),

a>j m + c>j w + aj(I)>∆(I) ≤ bj + D∞aj(O ∪ {i∗}) for all j ∈ J +(i) ∪ J −(i) and
√
ni
σ̂i
|∆i| ≤ D∞ for all i ∈ I

}
.

By adding i∗ to O, i.e., setting O ← O ∪ {i∗}, we can represent R(x0) by

R(x0) =

{
m ∈ Rk : there exists (∆(I),w) ∈ R|I| × Rq such that

a>j m + c>j w + a>j (I)∆(I) ≤ bj + D∞aj(O) for all j = 1, . . . , p and
√
ni
σ̂i
|∆i| ≤ D∞ for all i ∈ I

}
,

which matches Equation (13). Therefore we have proven the induction step.
The base case is then easily established by observing that for I = {1, . . . , k} and O = ∅,

Equation (13) is precisely Equation (11). Additionally, for I = ∅ and O = {1, . . . , k},
corresponding to having projected out all components of ∆, Equation (13) is precisely Equa-

tion (12). Since Σ̂ was fixed arbitrarily, R(x0) = R′(x0) with probability one, and since the
choice of x0 was also arbitrary, SPS

n = SRPS
n with probability one. �
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