Challenges in Applying Ranking and Selection after Search David J. Eckman and Shane G. Henderson

School of Operations Research and Information Engineering, Cornell University

Motivation

Setting: Large-scale simulation optimization

- Optimize a noisy function over a large number of systems.
- Simulation budget only allows for evaluating a subset of candidate systems.
- Ultimately choose a system as the best.

Goal: A finite-time statistical guarantee on the quality of the chosen system *relative* to the other candidate systems.

Method:

. Identify candidate systems via sampling or search.

2. Run a ranking-and-selection (R&S) procedure on the candidate systems.

Research Question and Results

Q: Do the guarantees of R&S procedures hold when replications taken during search are reused?

A: No. Not in general, though conservative procedures are likely robust. This finding extends to selection procedures for non-normal data, e.g. multi-armed bandits in full-exploration setting.

Existing R&S procedures that reuse search data:

- Boesel et al. [2003]
- Pichitlamken and Nelson [2006]
- Hong and Nelson [2007]

What's the Problem with Search Data?

Observation:

The *identities* of the returned systems depend on the observed performance of previously visited systems.

Search replications are conditionally dependent given the sequence of returned systems.

We design a "search-like" method that exploits this dependence to weaken R&S guarantees.

Adversarial Search (AS):

- If best system looks best \rightarrow add a δ -better system.
- For the set of the se system.

Traditional R&S Procedures

Assumptions:

- Fixed set of k systems with unknown performance.
- Replications are i.i.d. normal, independent across systems.

Formulations:

- Selection: select one system.
- Subset-Selection: preserve a subset of systems.

Events:

- Correct Selection (CS): select (or preserve) the best system.
- ► Good Selection (GS): select (or preserve) a system strictly within δ of the best.

Zones:

- Preference Zone (PZ(δ)): the best system is at least δ better than all the others.
- Indifference Zone (IZ(δ)): the complement of PZ(δ).

Guarantees:

 $\mathbb{P}(CS) \geq 1 - \alpha \quad \forall \mu \in \mathsf{PZ}(\delta), \quad (\mathsf{PCS})$ $\mathbb{P}(\mathsf{GS}) \geq 1 - \alpha \quad \forall \mu, \quad \mathsf{(PGS)}$

for $1/k < 1 - \alpha < 1$ and $\delta > 0$ where μ is the configuration of the true means of the systems.

R&S after Search

Apply a R&S procedure on a set of systems \mathcal{X} determined by a sampling or search method \mathcal{S} . What are meaningful PCS/PGS guarantees?

Guarantees Conditional on \mathcal{X} :

 $\mathbb{P}(\text{CS after } \mathcal{S} \mid \mathcal{X}) \geq 1 - \alpha \quad \forall \mathcal{X} \text{ s.t. } \mu(\mathcal{X}) \in \mathsf{PZ}(\delta),$ $\mathbb{P}(\mathsf{GS after } \mathcal{S} \mid \mathcal{X}) \geq \mathbf{1} - \alpha \quad \forall \mathcal{X}.$

Overall Guarantees:

 $\mathbb{P}(CS \text{ after } S \mid \mu(X) \in \mathsf{PZ}(\delta)) \geq 1 - \alpha,$ $\mathbb{P}(GS \text{ after } S) \geq 1 - \alpha.$

Guarantees that require $\mu(\mathcal{X}) \in \mathsf{PZ}(\delta)$ are ill-suited to the framework of R&S after search.

- Returned systems will likely have similar performance as a search progresses.
- No control over whether $\mu(\mathcal{X}) \in \mathsf{PZ}(\delta)$.

CornellEngineering **Operations Research and Information Engineering**

Simulation Experiments with AS

Realistic Search

Maximize $\lceil \log_2 x \rceil$ on the interval $\lceil 1/16, 16 \rceil$. Start at $x_1 = 0.75$ and take $n_0 = 10$ replications.

 \blacktriangleright Choose next system uniformly from within ± 1 of best-looking system.

