Probably Approximately Correct (PAC) Selection in Simulation/Best-Arm Problems

David Eckman
Cornell University, ORIE
dje88@cornell.edu

Shane Henderson
Cornell University, ORIE
sgh9@cornell.edu

INFORMS Annual Meeting
October 22, 2017
Problem Setting

- Finite number of alternatives, i.e., arms.
- Optimize a scalar performance measure of interest.
- An alternative’s performance is observed with simulation noise.

Examples:

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Performance Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>hospital bed allocation</td>
<td>expected diversion costs</td>
</tr>
<tr>
<td>ambulance base location</td>
<td>expected call response time</td>
</tr>
<tr>
<td>MDP policy</td>
<td>expected discounted total cost</td>
</tr>
</tbody>
</table>
Assumptions

Alternative 1 | X_{11} | X_{12} | ... | i.i.d., $\sim F_1$ with mean μ_1
Alternative 2 | X_{21} | X_{22} | ... | i.i.d., $\sim F_2$ with mean μ_2

Assume $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k$, where the order is unknown.

Observations across alternatives are independent.

- Unless CRN used for variance reduction.

Marginal distributions F_i:

- R&S: Normal distribution
- MAB: Bounded support or sub-Gaussian distribution
Selection Procedures

Typical Procedure

1. Obtain observations to estimate alternatives’ performances.
 - Calculate estimators Y_1, \ldots, Y_k of μ_1, \ldots, μ_k.
2. Select the alternative with the best estimated performance.
 - Select alternative $K := \text{arg max } Y_i$.

Would like to take as few samples as possible.

Most efficient procedures use *screening* to eliminate inferior systems.
Objective

PAC Selection Guarantee

A type of *fixed-confidence* guarantee on the performance of the chosen alternative *relative* to the other alternatives.

Probably Approximately Correct (PAC) election

\[\text{w.p. } 1 - \alpha \text{ within } \delta \text{ of the best} \]

“Close enough is good enough.”

- Frequentist ranking and selection (R&S) \(\rightarrow \) known as PGS.
- Multi-armed bandits (MAB) in full exploration.
Proving PAC Selection Guarantees

MAB
- Concentration inequalities, e.g., Hoeffding, Chernoff.

R&S
- Multiple comparisons with the best (MCB).
- Often hard to prove directly for sequential procedures.
 - Session MB57 – “An Efficient Fully Sequential Procedure Guaranteeing Probably Approximately Correct Selection”
- A more common guarantee deals with correct selection.
Bechhofer (1954) developed the idea of an indifferece zone (IZ).

IZ parameter $\delta > 0$ is often described as the smallest difference in performance worth detecting.

- **Preference Zone**: $\text{PZ}(\delta) = \{ \mu : \mu_k - \mu_{k-1} \geq \delta \}$
 “The best alternative is at least δ better than all the others.”

- **Indifference Zone**: $\text{IZ}(\delta) = \{ \mu : \mu_k - \mu_{k-1} < \delta \}$
 “There are close competitors to the best alternative.”
Space of Configurations

E.g., for \(F_i := \mathcal{N}(\mu_i, \sigma_i^2) \):
Two Frequentist Guarantees

Let K be the index of the chosen alternative. For specified confidence level $1 - \alpha \in (1/k, 1)$ and $\delta > 0$, guarantee

$$
\mathbb{P}_\mu(\mu_K > \mu_k - \delta) \geq 1 - \alpha \quad \text{for all } \mu, \quad \text{(Goal PACS)}
$$

$$
\mathbb{P}_\mu(\mu_K = \mu_k) \geq 1 - \alpha \quad \text{for all } \mu \in PZ(\delta). \quad \text{(Goal PCS-PZ)}
$$

Goal PACS \implies Goal PCS-PZ.

Goal PCS-PZ is the standard in the frequentist R&S community, but doesn’t appear in the MAB literature.
Goal PCS-PZ vs Goal PACS

“Goal PCS-PZ is weaker, but is that so bad?”

Issues with Goal PCS-PZ

- Says nothing about performance in IZ(δ).
- Configurations in PZ(δ) may be unlikely in practice.
 - Large number of alternatives.
 - Alternatives found from search.
- Choice of δ restricts the problem.
- May require Bayesian belief about μ.

Goal PACS has none of these issues!
Equivalence of Goals

When does Goal PCS-PZ \Rightarrow Goal PACS?

Intuition: More good alternatives, more likely to pick a good alternative.

Scattered results dating back to Fabian (1962), though none in the past 20 years.

Reasons for studying this:

- Show that R&S procedures meet Goal PACS.
- Determine how MAB procedures might be designed for Goal PCS-PZ, as a means to achieve Goal PACS.
Main Equivalence Results: Condition 1

Condition 1 (Guiard 1996)

For all subsets \(A \subset \{1, \ldots, k\} \), the joint distribution of the estimators \(Y_i \) for \(i \in A \) does not depend on \(\mu_j \) for \(j \notin A \).

“Changing the mean of an alternative doesn’t change the distribution of other alternatives’ estimators.”

Limitation: Can only be applied to procedures without screening.

- Normal (i.i.d.): Bechhofer (1954), Dudewicz and Dalal (1975), Rinott (1978)
- Bernoulli: Sobel and Huyett (1957)
- Support \([a, b]\): Naive Algorithm of Even-Dar et al. (2006)
Main Equivalence Results: Condition 2

Condition 2 (Hayter 1994)
For all alternatives $i = 1, \ldots, k$,

$$\mathbb{P}_\mu(\text{Select alternative } i)$$

is non-increasing in μ_j for every $j \neq i$.

“Improving an alternative doesn’t help any other alternative get selected.”

Limitation: Deriving an expression for $\mathbb{P}_\mu(\text{Select alternative } i)$ is hard.
Main Equivalence Results: Condition 2

Procedure not satisfying Condition 2

1. Take \(n_0 \) samples of each alternative.
2. Eliminate all but the two alternatives with the highest means.
3. Take \(n_1 \) additional samples for the two surviving alternatives.
4. Select the surviving alternative with the highest overall mean.

Consider the three-alternative case: \(\mu_1 < \mu_2 < \mu_3 \).
- Track \(P_\mu(\text{Select alternative 2}) \) as \(\mu_1 \) increases up to \(\mu_2 \).
- Consider \(n_1 = 0 \) and \(n_1 = \infty \) as extreme cases.
Main Equivalence Results: Condition 3

Condition 3
For all alternatives $i = 1, \ldots, k$,

$$\mathbb{P}_\mu(\text{Select alternative } j, \text{ for some } j < i)$$

is non-increasing in μ_i.

“Improving an alternative doesn’t help inferior alternatives get selected.”

Condition 2 \Rightarrow Condition 3.
Conclusions

Main take-aways

- Goal PACS is superior to Goal PCS-PZ.
- Goal PACS can follow immediately from Goal PCS-PZ.
- Condition 3 has the potential to hold for many procedures, if only it could be verified.

Do modern sequential selection procedures achieve Goal PACS?

- KN of Kim and Nelson (2001)
- BIZ of Frazier (2014)

Can MAB procedures be designed for Goal PCS-PZ while also satisfying one of these conditions?
Questions
Acknowledgments

This material is based upon work supported by the National Science Foundation under grants DGE–1144153 and CMMI–1537394. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
References

References

