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Abstract

Selection-of-the-best procedures designed under the indifference-zone (IZ) formula-
tion provide a guarantee on the probability of correct selection (PCS) whenever the
performance of the best system exceeds that of the second-best system by a speci-
fied amount. We discuss the shortcomings of this guarantee and argue that providing
a guarantee on the probability of good selection (PGS)—selecting a system whose
performance is within a specified tolerance of the best—is a more justifiable goal. Al-
though this form of fixed-confidence, fixed-tolerance guarantee has been well studied
in the multi-armed-bandit community, it has received far less attention in the simu-
lation community. We examine numerous techniques for proving the PGS guarantee,
including sufficient conditions under which selection and subset-selection procedures
that deliver the IZ-inspired PCS guarantee also deliver the PGS guarantee. We also
compare the frequentist PGS guarantee to its Bayesian counterpart and discuss the
differences in how procedures are designed for these two goals.

1 Introduction

In many problems of decision-making under uncertainty, the objective is to select the best
from among a finite number of systems, i.e., alternatives, where the performance of a sys-
tem must be estimated via stochastic simulation. When each system can be simulated to
some degree within the available computational budget, these problems go by the name of
ranking and selection (R&S). An early development in R&S was the indifference-zone (IZ)
formulation of Bechhofer [1954], and it has played a dominant role in the design of selection-
of-the-best procedures ever since; see, for example, the recent procedures of Frazier [2014]
and Zhong and Hong [2017].

Under the IZ formulation, procedures are designed to guarantee that when the perfor-
mance of the best system is at least δ better than those of the other systems, the best system
will be chosen with probability exceeding 1 − α, where both δ and 1 − α are specified by

1



the decision-maker. That is, IZ-inspired procedures guarantee that the probability of correct
selection (PCS) is above a specified threshold whenever the best system is sufficiently better
than the others. A major shortcoming of this guarantee is that no statement is made about
how a given procedure performs when there are close contenders to the best system. For such
problem instances, the decision-maker might be equally satisfied with selecting any system
whose performance is, in some sense, “good.”

For this reason, a more suitable goal is to guarantee that for any problem instance,
a system with performance strictly within δ of the best will be chosen with probability
exceeding 1−α. The value of δ thus represents the decision-maker’s tolerance towards making
a suboptimal decision. Compared to the IZ-inspired PCS guarantee, this guarantee on the
probability of good selection (PGS) has received far less attention in the R&S literature and
has often been treated as a secondary goal. We survey this neglected area of research in this
paper. Although the IZ formulation has been extended to multi-objective R&S problems
[Chen and Lee, 2009, Teng et al., 2010], we do not address it in this paper since, for this
class of problems, the definition of good selection remains unsettled [Hunter et al., 2017,
Branke et al., 2016].

Selection-of-the-best procedures have been implemented in commercial software and par-
allel environments, enabling R&S to be more widely used on large-scale problems. The
application of R&S to problems with thousands, or even millions, of systems has necessi-
tated the design of efficient procedures that scale well. Moreover, this large-scale setting
justifies the use of procedures that return a subset of high-quality systems from which a
final selection can be made. Motivated by these trends, we believe that the time is right for
the PGS guarantee to displace the IZ-inspired PCS guarantee as the leading design goal for
frequentist selection and subset-selection procedures.

With this objective in mind, the main contributions of this paper are threefold:

1. We explain the flaws of the IZ-inspired PCS guarantee and clarify sufficient conditions
under which the IZ-inspired PCS guarantee implies the PGS guarantee.

2. We synthesize and extend past results to present a unified treatment of the PGS
guarantee.

3. We elucidate the key ideas behind past proof techniques that could be used to prove
PGS guarantees for existing procedures and to design future procedures.

This paper is a considerable outgrowth of an advanced tutorial that is to be presented at the
2018 Winter Simulation Conference [Eckman and Henderson, 2018a]. In addition to greatly
expanding on the central ideas in the tutorial, this paper provides more precise definitions
of key concepts, proofs of the main results, and extensions to subset-selection procedures.

For all of our focus on the PGS guarantee, it is not without its own shortcomings. Like the
IZ-inspired PCS guarantee, the PGS guarantee offers no assurance about the performance of
the selected system the other α× 100% of the time. An even stronger goal that avoids this
issue is guaranteeing that the expected linear loss—the expected difference in performance
between the chosen system and the best system—does not exceed some threshold [Chick
and Inoue, 2001b]. Expected linear loss (also known as expected opportunity cost) may be
a more pertinent metric for business and engineering decisions, but it can also be difficult to
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interpret. In relation to the PGS guarantee, expected linear loss can be used to bound PGS
from below via Markov’s inequality [Chick and Wu, 2005]. Selection-of-the-best procedures
with guarantees on expected linear loss are typically designed under a Bayesian framework.
Since we consider frequentist guarantees throughout much of this paper, we choose to focus
on PGS as opposed to expected linear loss.

A related problem in which delivering a PGS guarantee is a featured goal is best-arm iden-
tification for multi-armed bandits [Audibert and Bubeck, 2010]. In this setting, the PGS
guarantee is called the probably approximately correct (PAC) selection guarantee where
“probably” refers to the fixed confidence, 1 − α, and “approximately correct” refers to
the fixed tolerance, δ [Even-Dar et al., 2002, 2006]. Research in this area has focused on
the design and complexity analysis of efficient selection procedures [Mannor and Tsitsiklis,
2004, Karnin et al., 2013] and subset-selection procedures [Kalyanakrishnan and Stone, 2010,
Kalyanakrishnan et al., 2012, Zhou et al., 2014]. Another variant of the PAC selection guar-
antee arises in machine learning and data mining for the problem of identifying a hypothesis
with a low misclassification probability [Schuurmans and Greiner, 1995, Domingo et al.,
2002]. With a few exceptions, e.g., Chandrasekaran and Karp [2014], the IZ formulation
does not appear in the multi-armed-bandit literature.

Another approach for, among other things, classifying systems as good or bad is ordinal
optimization [Lau and Ho, 1997, Ho et al., 2000]. In the ordinal optimization paradigm,
systems are classified based on the ordering of their performances, with either the top m
systems or top m percent of systems being designated as good. This ordinal perspective
of goodness, however, does not take into account potentially large differences in the perfor-
mances of top systems. In this case, the decision-maker may not be satisfied with selecting a
system that has a high ordering but a poor performance relative to the best. Instead, more
control over the performance of a selected system can be achieved by defining goodness as a
cardinal property, i.e., regarding any system whose performance is within δ of the best as a
good system, as we do in this paper.

The remainder of this paper is outlined as follows. In Section 2, we argue that the PGS
guarantee is superior in many ways to the IZ-inspired PCS guarantee. In Sections 3 and
4, we present sufficient conditions under which selection and subset-selection procedures
with the IZ-inspired PCS guarantee simultaneously deliver the PGS guarantee. In Section
5, we review other methods for proving the PGS guarantee and highlight several technical
issues that arise. In Section 6, we compare the frequentist PGS guarantee with the Bayesian
guarantee on posterior PGS and we discuss future research directions for the PGS guarantee
in Section 7.

2 The IZ-Inspired PCS Guarantee versus the PGS

Guarantee

Before mathematically defining the various fixed-confidence guarantees, we introduce some
standard notation for R&S problems. Suppose there are k systems with performances
µ1, . . . , µk where, without loss of generality, we assume a higher performance is better.
We refer to the vector µ = (µ1, . . . , µk) as the configuration of the systems’ performances
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and use [·] to denote the indices of the systems when ordered by their performances, i.e.,
µ[1] ≤ µ[2] ≤ · · · ≤ µ[k]. If some systems have tied performances, we will assume that the
ordered indexing of the systems is arbitrary and fixed. When we later compare selection de-
cisions under different configurations, it will be implicitly assumed that the ordered indices
are with respect to a fixed configuration, µ, unless otherwise stated.

We define a selection procedure as one that determines how many observations should
be taken from each system and then ultimately selects the system with the best estimated
performance. The index of the system chosen by a selection procedure, denoted by K, is a
random variable since the observations, and hence the estimators of systems’ performances,
are themselves random variables. Correct selection is then defined as the event CS := {µK =
µ[k]}. Under this definition, when there are multiple systems with performances tied for the
best, choosing any of the best systems is considered a correct selection. A fixed-confidence
guarantee on the probability of correct selection for any configuration takes the form

Pµ(CS) ≥ 1− α for all µ, (Goal PCS)

where 1 − α ∈ (1/k, 1) is the user-specified confidence and Pµ is the probability measure
induced through the combination of the selection procedure’s sampling and the configuration
of the systems’ performances.

Without further assumptions, satisfying Goal PCS can be computationally expensive.
Indeed, when the best system is only slightly better than the second-best system, a substan-
tial amount of computational effort could be needed to distinguish the two systems. From
the decision-maker’s perspective, it seems unreasonable to demand that a procedure makes a
correct selection with high probability for any positive gap in performance. For this reason,
selection procedures are rarely designed to deliver Goal PCS. The procedure of Fan et al.
[2016] comes close; it guarantees that whenever there is a unique best system, it will be
selected with probability at least 1− α. The sampling complexity necessary to attain Goal
PCS has also been studied in the multi-armed-bandit literature [Kaufmann et al., 2014].

As a way around the issue with Goal PCS, Bechhofer [1954] proposed the indifference-
zone formulation. The idea behind the IZ formulation is to specify a parameter δ > 0 that
divides the space of configurations into the preference zone PZ(δ) := {µ : µ[k] − µ[k−1] ≥ δ}
and the indifference zone IZ(δ) := {µ : µ[k] − µ[k−1] < δ}. In the preference zone, the best
system’s performance is at least δ better than that of the second-best system, whereas in the
indifference zone, there are systems with performances within δ of the best. Under the IZ
formulation, the PCS guarantee states that, only for configurations in the preference zone,
the best system is selected with high probability:

Pµ(CS) ≥ 1− α for all µ ∈ PZ(δ). (Goal PCS-PZ)

Ever since the conception of the indifference zone, Goal PCS-PZ has been a popular goal for
selection procedures.

In regards to good selection, the R&S literature has been inconsistent about whether
a system with knife-edge performance µ[k] − δ is considered good or bad. Although this
distinction may appear minor, it is important here that we consider the IZ formulation when
defining good selection. Under the IZ formulation, the PCS guarantee holds whenever µ ∈
PZ(δ), i.e., µ[k]−µ[k−1] ≥ δ. Thus the events of correct selection and good selection will agree
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over the entire preference zone if we define good selection as GS := {µK > µ[k] − δ}. Under
this definition, only systems with performances strictly within δ of the best are considered
good. A guarantee on the probability of good selection then has the form

Pµ(GS) ≥ 1− α for all µ. (Goal PGS)

Goal PCS implies Goal PGS since all correct systems are good, and Goal PGS implies Goal
PCS-PZ since in the preference zone there is only one good system.

2.1 Why Goal PGS is Superior to Goal PCS-PZ

As a stand-alone guarantee, Goal PCS-PZ suffers from several flaws, the foremost being
that it says nothing about a procedure’s behavior when the configuration of systems’ per-
formances is in the indifference-zone. Does it deliver Goal PGS? Does it even terminate in
finite time almost surely? This shortcoming of Goal PCS-PZ is critical in practice, where
the difference between the performances of the best and second-best systems is unknown and
likely cannot be bounded from below with certainty. Furthermore, for problems with large
numbers of systems, one might expect that the best system will not be well-separated from
the others, suggesting that for reasonable values of δ, the configuration of systems’ perfor-
mances will be in the indifference zone. Likewise, in the case when a selection-of-the-best
procedure is used to “clean-up” after a simulation-optimization search [Boesel et al., 2003],
systems with similar performances are likely to be returned by the search. In this setting,
IZ-inspired PCS guarantees are conditional on the random configuration of the returned sys-
tems’ performances being in the preference zone, an event that the decision-maker cannot
control or verify [Eckman and Henderson, 2018b].

A related issue with Goal PCS-PZ is the presumption that the configuration is in the
preference zone. According to Parnes and Srinivasan [1986], Goal PCS-PZ would only be
useful if either (i) the decision-maker has prior knowledge that the configuration is almost
certainly in the preference zone or (ii) in the event that the configuration is in the indifference
zone, the error µ[k] − µK is unacceptably large with small probability. In either case, the
implicit Bayesian assumption about the configuration lying in the preference zone and inter-
est in the linear loss function µ[k] − µK suggests that a selection procedure with a Bayesian
guarantee may be preferred.

Another concern with Goal PCS-PZ is the meaning of the IZ parameter. Under Goal
PGS, δ represents the smallest difference in performance that is worth detecting; it classifies
systems that, if selected, would or would not be acceptable to the decision-maker. Under
Goal PCS-PZ, however, the IZ parameter is only of significance in stating that if the best
system is at least δ better than the others, the decision-maker would only be satisfied with
selecting the best system. In this way, the IZ parameter restricts the set of problems on
which a selection procedure can be relied on to perform well. This role of the IZ parameter
in Goal PCS-PZ can have adverse consequences. For example, a decision-maker may choose
a small value for δ in an attempt to be more confident that the configuration lies in PZ(δ).
Yet by choosing δ to be smaller than their tolerance, the decision-maker will end up with a
more conservative selection procedure [Fan et al., 2016].

Our objective in discussing these flaws is not to argue that Goal PCS-PZ is without use.
Indeed, in Section 3 we show that under various conditions it is equivalent to Goal PGS.
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We instead assert that Goal PCS-PZ is better suited as a tool for proving Goal PGS than
as a stand-alone goal. One explanation for the persistence of Goal PCS-PZ is perhaps the
relative mathematical ease of designing procedures to deliver this goal; a lower bound on the
difference between the performance of the best and second-best systems is useful in proving
PCS guarantees. As we will see, proofs of Goal PGS must deal with technical challenges
that are not present in the proofs of Goal PCS-PZ, such as needing to account for pairwise
comparisons between good and bad systems and not just those involving the best system.

Although Goal PGS has none of the aforementioned issues with Goal PCS-PZ, it is not
perfect. In particular, Goal PGS says nothing about what happens when a good system is not
picked. Just how bad are the bad selections of procedures achieving Goal PGS? Intuitively,
one might expect that in this event, a selection procedure would select slightly bad systems
and only rarely select an extremely bad one. This argument, however, is not altogether
different from the belief that procedures achieving Goal PCS-PZ still make good selections
with high probability for configurations in the indifference zone. We do not address this
matter any further in this paper, but instead leave it as an open research question.

2.2 Distributional Assumptions

Before discussing how Goal PCS-PZ can be lifted to Goal PGS, we introduce some notation
and distributional assumptions related to the observations of the systems’ performances. Let
Xij denote the jth observation from System i for i = 1, . . . , k. We assume that the vectors of
observations Xj = (X1j, X2j, . . . , Xkj), for j = 1, 2, . . ., are drawn independently from some
joint distribution F having marginal distributions Fi. Unless otherwise stated, we allow
observations X1j, X2j, . . . , Xkj to be dependent across systems, as is the case when common
random numbers are used.

The R&S and multi-armed-bandit communities differ in the assumptions they make about
the marginal distributions Fi. Within the R&S community, a common assumption is that the
observations are normally distributed and the performance measures µi are the corresponding
means. This normality assumption can often be approximately satisfied using batched means
as a single observation and appealing to the Central Limit Theorem. The R&S problem has
also been studied from a large-deviations perspective that does not rely on this assumption
[Glynn and Juneja, 2004]. For later research in this direction, see Broadie et al. [2007],
Blanchet et al. [2008], Hunter and Pasupathy [2010] and Glynn and Juneja [2015]. For
multi-armed bandit problems, the distributions of observations are either assumed to have
bounded support or to be sub-Gaussian with a known bound on the variance [Even-Dar
et al., 2002, 2006].

To prove sufficient conditions under which Goal PCS-PZ implies Goal PGS, we make a
more relaxed assumption on the joint distribution of the observations, stated in Assumption
1.

Assumption 1 The joint distribution F is fully specified by the configuration µ.

Unlike other regularity conditions such as normality or bounded support, Assumption
1 does not control the large-deviations behavior of the observations. Therefore, under As-
sumption 1 alone, the sample sizes needed to detect differences in performance of δ cannot
be predetermined. Rather than enabling the design of procedures achieving Goal PCS-PZ
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or Goal PGS, our purpose for Assumption 1 is to ensure that the probability measure Pµ is
well-defined and unique. It will be important later when we manipulate the configuration
that F is unambiguously defined for each µ.

Given the above setup, we further describe a selection procedure as one that (i) takes
observations Xij from all systems, (ii) calculates estimators Yi of µi, and (iii) selects a single
system K ∈ arg maxi Yi as the best, while terminating in finite time. As an illustration, for
the standard R&S setting with normally distributed observations, the performances µi are
the means of the marginal distributions Fi, and the estimators Yi are naturally the sample
means.

With regards to the estimators, we make an additional assumption, stated in Assumption
2.

Assumption 2 The estimators Y1, . . . , Yk have a joint probability density function.

Assumption 2 is made so that the event of ties among estimators occurs with probability
zero. We can then state that Pµ(Select i) = Pµ(Yi > Yj for all j 6= i), even though the event
{Select i} may include sample paths on which Yi = Yj for at least some j 6= i and System i is
ultimately selected based on certain tie-breaking rules. We make Assumption 2 as a matter
of convenience; a careful accounting of ties should allow the results of Section 3 and 4 to
extend to the case where the estimators are discrete random variables.

3 Goal PCS-PZ Implies Goal PGS

3.1 Counterexample to Goal PCS-PZ Implies Goal PGS

As previously mentioned, Goal PGS implies Goal PCS-PZ. One might wonder if the converse
holds: do all selection procedures that achieve Goal PCS-PZ also achieve Goal PGS? A
supporting intuition is that for configurations in the indifference zone, the presence of good
systems should make it more likely that one of them is selected. We show that this is not
universally true by presenting a contrived selection procedure (Procedure 1) that achieves
Goal PCS-PZ but not Goal PGS. In the counterexample, it is assumed that observations
from System i are independent and identically distributed (i.i.d.) from normal distributions
with means µi and known common variance σ2.

Proposition 1 Procedure 1 achieves Goal PCS-PZ but not Goal PGS for k > 2.

The proof of Proposition 1 can be found in Appendix A.1.
Procedure 1 behaves bizarrely: If one estimator is clearly better than the others, the

procedure selects the best-looking system. But if the top two estimators are close to each
other, the procedure selects from among the worst-looking systems. The presence of good
systems can therefore make it less likely that one of the good systems is selected. Since
selection procedures typically choose the system with the highest estimator, one might yet
expect that “reasonable” selection procedures that achieve Goal PCS-PZ also achieve Goal
PGS.
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Procedure 1: Counterexample to Goal PCS-PZ implies Goal PGS

Setup: Specify a confidence level 1− α ∈ (1/k, 1) and an IZ parameter δ > 0.
Choose a scalar r > −Φ−1((2k)−1) arbitrarily.

Sampling: Take n =
⌈
2(hB + r)2σ2δ−2

⌉
observations from each system, independent

across systems, where hB is the constant of Bechhofer [1954].
Estimation: Calculate the sample means Yi = n−1

∑n
j=1Xij as the estimators of

the systems’ performances and denote the ordered estimators by
Y(1) ≤ Y(2) ≤ · · · ≤ Y(k).

Selection: If Y(k) > Y(k−1) + rσ
√

2/n, select the system corresponding to Y(k) as the
best. Otherwise, select a system uniformly at random from those that do not
correspond to Y(k) or Y(k−1).

3.2 Lifting Goal PCS-PZ

An effective approach for extending Goal PCS-PZ to Goal PGS is to relate the probabil-
ity of good selection under any IZ configuration with that under a related preference-zone
configuration. That is, for an arbitrary configuration µ ∈ IZ(δ), one finds a configuration
µ∗ ∈ PZ(δ) for which it can be shown that

Pµ(GS) ≥ Pµ∗(GS), (1)

where the notation Pµ and Pµ∗ reflects the dependence of the probability measures on the
configuration. Because µ∗ ∈ PZ(δ), it follows from Goal PCS-PZ that Pµ∗(GS) = Pµ∗(CS) ≥
1 − α and so Pµ(GS) ≥ 1 − α. Hence if it can be shown that Inequality (1) holds for any
arbitrary configuration µ ∈ IZ(δ) and its corresponding configuration µ∗ ∈ PZ(δ), then Goal
PCS-PZ implies Goal PGS.

Some care is needed in constructing the related configuration µ∗, as Inequality (1) should
not be expected to hold for an arbitrary choice of µ∗. Intuitively, the configuration µ∗ should
closely resemble µ so that the probabilities of good selection can be easily compared.

A simple choice for constructing µ∗ is to only increase the performance of (one of) the
best systems until it is exactly δ better than the second best, i.e., set µ∗[k] = µ[k−1] + δ and

µ∗[i] = µ[i] for all i = 1, . . . , k − 1 where [k] is the index associated with (one of) the best
systems in µ. While changing the performance of only one system would seem to simplify
the analysis, it actually makes it harder to compare the PGS under the two configurations.
This is because the PGS for a configuration µ∗ ∈ PZ(δ) is a function of the differences in
performances between the best system and the bad systems, all of which are changed by
shifting the best system’s performance.

A better construction for µ∗ is instead to decrease the performances of the good systems
of µ while holding the performance of (one of) the best systems fixed. To formalize this idea,
let G := {i : µi > µ[k] − δ} and B := {i : µi ≤ µ[k] − δ} denote the sets of indices of the
good and bad systems, respectively, for a configuration µ. The related configuration µ∗ is
then described by µ∗i = µi for i ∈ B ∪ {[k]} and µ∗i = µ[k] − δ for i ∈ G\{[k]}. That is, µ∗ is
identical to µ except that the good systems of µ (other than the best) are now bad systems
with knife-edge performance µ[k] − δ. From this construction, µ∗ ∈ PZ(δ).
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In Section 3.3, we show that under various conditions on selection procedures, Inequality
(1) is satisfied for any configuration µ ∈ IZ(δ) and this choice of µ∗.

3.3 Sufficient Conditions

Dating back to Fabian [1962], numerous efforts have been made to identify sufficient con-
ditions under which selection procedures that achieve Goal PCS-PZ simultaneously achieve
Goal PGS. We present two of the most general conditions in Theorems 1 and 2, both of
which deal with probability statements about the ordering of estimators. For procedures
achieving Goal PCS-PZ, each of the two conditions imply Inequality (1) and therefore Goal
PGS. The sources and interpretations of the two conditions are discussed in greater detail
following the statements of the theorems.

Theorem 1 Let R be a selection procedure achieving Goal PCS-PZ. Then R also achieves
Goal PGS if

(C1) For all subsets A ⊆ {1, . . . , k} and for all pairs of configurations µ and µ̃ such that
µi = µ̃i for all i ∈ A,

Pµ(Yi > Yj for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹj for all j ∈ A\{i}) for all i ∈ A,

where Yi and Ỹi denote the estimators of the performance of System i under configu-
rations µ and µ̃, respectively.

Condition (C1) states that the probability that a system has the highest estimated per-
formance among those in an arbitrary subset of systems does not depend on the true perfor-
mances of systems not belonging to the subset. It generalizes two conditions presented by
Guiard [1996] that we restate in Corollary 1 as Conditions (C2) and (C3).

Proof of Theorem 1. Fix an arbitrary configuration µ and define G, B, and µ∗ accordingly.
Let Y[k] denote the estimator associated with System [k] where the index [k] is with respect
to the configuration µ. Then

Pµ(GS) ≥ Pµ(Y[k] > Yi for all i ∈ B)

= Pµ∗(Y ∗[k] > Y ∗i for all i ∈ B)

≥ Pµ∗(Y ∗[k] > Y ∗i for all i 6= [k])

= Pµ∗(CS)

≥ 1− α.

The first inequality follows from the definition of good selection, while the first equality
follows from Condition (C1), taking A = B ∪ {[k]}. The second inequality follows from
including extra conditions and the last inequality follows from Goal PCS since µ∗ ∈ PZ(δ).
�

Condition (C1) may be difficult to verify. For this reason, we list four conditions in
Corollary 1 that each imply Condition (C1), but may be easier to verify. Proofs of the
conditions of Corollary 1 and their relationships can be found in Appendices A.2 and A.3.
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Corollary 1 The following conditions each imply Condition (C1):

(C2) Let B1 and B2 be disjoint subsets of {1, 2, . . . , k} and IP ⊆ B1 × B2 be a set of index
pairs (i, j) with i ∈ B1 and j ∈ B2. For all (B1, B2, IP),

Pµ(Yi > Yj, for all (i, j) ∈ IP) ≥ Pµ̃(Ỹi > Ỹj, for all (i, j) ∈ IP),

for all pairs of configurations µ and µ̃ satisfying µi − µj ≥ µ̃i − µ̃j for all (i, j) ∈ IP.

(C3) For all subsets A ⊂ {1, . . . , k}, the joint distribution of the estimators Yi for i ∈ A
does not depend on µj for all j /∈ A.

(C4) The estimators Y1, . . . , Yk are mutually independent.

(C5) The joint distribution of the estimators Y1, . . . , Yk is shift invariant, i.e., for any pair
of configurations µ and µ̃, 

Y1 − µ1

Y2 − µ2
...

Yk − µk

 d
=


Ỹ1 − µ̃1

Ỹ2 − µ̃2
...

Ỹk − µ̃k

 .

Condition (C2), which corresponds to class FND of Guiard [1996], has two main aspects.
First, as the difference between the performances of systems increases, the probability that
the systems with the higher true performances outperform the systems with the lower true
performances does not decrease. Second, for the subset of systems whose performances
remain unchanged relative to each other, the probability that any of the systems in this
subset outperforms the others in the subset is unchanged. As shown in the proof of Corollary
1, it is because of this second property that Condition (C2) implies Condition (C1).

Condition (C3) corresponds to class F of Guiard [1996] and states that the joint distri-
bution of the estimators of a subset of systems does not depend on the true performances of
systems outside that subset. This statement stops short of asserting that the estimators are
independent and thereby allows correlated observations across systems, as would be the case
if common random numbers were used [Clark and Yang, 1986, Nelson and Matejcik, 1995].
Furthermore, Condition (C3) can be applied to show that some selection procedures that use
control-variate estimators achieve Goal PGS, e.g., Procedure 3 of Nelson and Staum [2006]
and the WCS procedure of Tsai [2011].

Condition (C4), which corresponds to class FI of Guiard [1996], is satisfied by many
early multi-stage selection procedures, e.g., the procedures of Dudewicz and Dalal [1975]
and Rinott [1978]. Condition (C4) can even be applied to some procedures for which the
estimators are discrete random variables. An example of this is the procedure of Sobel and
Huyett [1957] for selecting the Bernoulli population with the highest success probability; a
proof of the procedure’s PGS guarantee can be found in Appendix A.4.

Condition (C5) corresponds to class FS in Guiard [1996] and states that the joint dis-
tribution of the estimators of the systems’ performances is shift invariant with respect to
the true performances. That is, when the true performances of the systems shift by a given
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amount, the joint distribution of their estimators shifts by the same amount. Condition (C5)
does not follow automatically from an assumption that the joint distribution of the observa-
tions is shift invariant with respect to the configuration, as is the case when the observations
are normally distributed and the estimators are the sample means.

Condition (C5) is a slight strengthening of the condition in Theorem 1 of Nelson and
Matejcik [1995], which makes comparisons with the slippage configuration associated with
System [k] being the best, denoted by µsc where µsc[k] = µ[k] and µsci = µsc[k] − δ for all i 6= [k]:

Y[k]
Y[k−1] + (µ[k] − µ[k−1] − δ)

...
Y[1] + (µ[k] − µ[1] − δ)

 d
=


Y sc
[k]

Y sc
[k−1]
...
Y sc
[1]

 . (2)

The left-hand side of Equation (2) features estimators under an arbitrary configuration µ
and the right-hand side features estimators under the corresponding slippage configuration
µsc. In contrast to Equation (2), Condition (C5) allows comparisons to be made between the
joint distribution of the estimators under any two configurations, not just those for which
the best systems have the same performance.

Prior to Guiard [1996], many of the conditions proposed for lifting Goal PCS-PZ to
Goal PGS were unnecessarily restrictive. For example, Fabian [1962] proved that under a
“permutability condition,” procedures achieving Goal PCS-PZ also guarantee the stronger
probability statement

Pµ(µK ≥ µ[k] −D) ≥ 1− α for all µ, (3)

where D = max{0, δ − (Y(k) − Y(k−1))} and Y(i) denotes the ith-lowest estimator. Equation
(3) in turn implies Goal PGS, since D ≤ δ. Giani [1986] later extended the analysis to a
more general selection goal.

Chiu [1974a] required that the probability that the best system outperforms all of the
bad systems, i.e., Pµ(Y[k] > Yi for all i ∈ B), is increasing with respect to the differences
µ[j+1] − µ[j] for all j = 1, . . . , |B|, holding all other differences fixed. Yet the proof of Goal
PGS in Chiu [1974a] also implicitly uses the assumption that Pµ(Y[k] > Yi for all i ∈ B)
does not depend on the true means of the other systems, essentially Condition (C1). As a
result, this monotonicity condition is unnecessary to prove that Goal PCS-PZ implies Goal
PGS. The implicit assumption that Condition (C1) holds is also made in the proofs of Chiu
[1974b] and Parnes and Srinivasan [1986].

Feigin and Weissman [1981] and Chen [1982] separately prove that Goal PCS-PZ implies
Goal PGS for the case when the estimators Y1, . . . , Yk are mutually independent and are from
a common family of stochastically increasing distributions that only differ in their location
parameters. Specifically, Chen [1982] uses a monotonicity lemma developed independently
by Alam and Rizvi [1966] and Mahamunulu [1967] (Lemmas 2.1 and 4.2 therein, respectively)
to show that, for his procedure, PGS is minimized in the slippage configuration. Neverthe-
less, the additional assumption of a stochastically increasing family of distribution functions
for the estimators is unnecessary since having mutually independent estimators—Condition
(C4)—is sufficient.
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As we have shown, Conditions (C1)–(C5) can be used to prove Goal PGS for many
classical multi-stage selection procedures that determine necessary sample sizes for all sys-
tems and then select one as the best. But these conditions are unlikely to be satisfied for
more elaborate selection procedures that sequentially eliminate (screen out) inferior systems,
e.g., the procedures of Paulson [1964], Kim and Nelson [2001], and Frazier [2014]. Proce-
dures such as these tend to be more efficient than multi-stage procedures because they can
quickly eliminate inferior systems without taking unnecessary observations. Yet by itera-
tively eliminating systems from contention, procedures of this kind introduce two issues that
make Conditions (C1)–(C5) harder to verify: the estimators of systems’ performances are
no longer well-defined and are highly dependent across systems.

To resolve the first issue, we might set Yi = −∞ if System i is eliminated, to reflect the
fact that System i will not be selected. Under this definition, however, multiple systems can
have estimators of−∞, making the probability statements in Conditions (C1)–(C5) harder to
verify. The second issue of dependent estimators cannot be remedied and immediately rules
out Condition (C4), mutually independent estimators. In addition, shifting the performance
of a given system can affect the number of samples taken from other systems and future
elimination decisions, meaning Conditions (C3) and (C5) can also be ruled out. For similar
reasons, Conditions (C1) and (C2) do not appear to have any better chances of holding.

Instead, Condition (C6), presented in Theorem 2, is more likely to be satisfied for se-
quential procedures that screen out systems. Theorem 2 is stated without proof by Hayter
[1994], so we provide a proof.

Theorem 2 Let R be a selection procedure achieving Goal PCS-PZ. Then R also achieves
Goal PGS if

(C6) For all systems i = 1, . . . , k, Pµ(Select i) is nonincreasing in µj for every j 6= i.

Condition (C6) states that increasing the true performance of any system does not in-
crease the probability that any other system is selected. It implies that Pµ(Select i) is non-
decreasing in µi—a monotonicity property that one might expect most selection procedures
to satisfy. Unfortunately, directly verifying Condition (C6) or even formulating stronger
conditions that imply it is difficult [Hayter, 1994].

Proof of Theorem 2. Fix an arbitrary configuration µ and define G and B accordingly.
If |B| = k − 1, then there is only one good system in µ and so µ ∈ PZ(δ), thus Pµ(GS) =

Pµ(CS) ≥ 1 − α. Otherwise, define a configuration µ(1) such that µ
(1)
[|B|+1] = µ[k] − δ and

µ
(1)
i = µi for all i 6= [|B|+ 1], i.e., the worst good system is shifted down to µ[k] − δ, thereby

making it a bad system. By definition, selection procedures select a single system, thus

Pµ(Select [|B|+1])+
∑

i 6=[|B|+1]

Pµ(Select i) = 1 = Pµ(1)(Select [|B|+1])+
∑

i 6=[|B|+1]

Pµ(1)(Select i).

(4)
By Condition (C6),

Pµ(Select i) ≤ Pµ(1)(Select i),
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for all i 6= [|B| + 1] because the performance of system [|B| + 1] has been decreased. In
particular, this holds for all bad systems. Together with Equation (4), we obtain

Pµ(Select [|B|+1])+
∑

i:µi≥µ[|B|+1]

i 6=[|B|+1]

Pµ(Select i) ≥ Pµ(1)(Select [|B|+1])+
∑

i:µi≥µ[|B|+1]

i 6=[|B|+1]

Pµ(1)(Select i).

The left-hand side is Pµ(GS) while the right-hand side is Pµ(1)(Select [|B|+ 1]) + Pµ(1)(GS).
Then since Pµ(1)(Select [|B|+ 1]) ≥ 0, we have

Pµ(GS) ≥ Pµ(1)(GS).

This argument can be repeated to chain together inequalities of the form

Pµ(`−1)(GS) ≥ Pµ(`)(GS),

for ` = 1, . . . , |G| − 1 where µ(0) := µ and we recursively define µ(`) by µ
(`)
[|B|+`] = µ[k] − δ and

µ
(`)
i = µ

(`−1)
i for all i 6= [|B| + `]; i.e., the worst ` good systems of µ have been made bad.

From this definition, µ(|G|−1) = µ∗. Therefore the inequalities all together yield

Pµ(GS) ≥ Pµ∗(GS) = Pµ∗(CS) ≥ 1− α. �

One might naturally expect Condition (C6) to hold for many selection procedures, includ-
ing sequential ones that screen out systems. All else being equal, a given system’s likelihood
of being selected should suffer when one of its competitors is made stronger. Despite this
appealing intuition, Condition (C6) does not universally hold for sequential procedures due
to the complicated effect that changing the performances of systems can have on the selection
decision. As a counterexample, consider the standard R&S setting in which the observations
are normally distributed and the performances are the means. Hayter [1994] describes the
following two-stage selection procedure that simulates systems independently:

Procedure 2: Two-Stage Sampling

Sampling: Take n0 i.i.d. samples for each system.
Screening: Eliminate all but the two systems with the highest sample means.
Sampling: Take n1 additional i.i.d. samples from each of the two surviving systems.
Selection: Select the surviving system with the highest overall sample mean.

To show that Procedure 2 can fail to satisfy Condition (C6), consider the case in which
there are three systems with performances µ1 < µ2 < µ3, i.e., System 3 is the best. Following
the argument given by Hayter [1994], we now demonstrate how, for fixed values of n0 and n1,
increasing the performance of System 1 can actually increase the probability that System 2
is selected, violating Condition (C6).

For fixed n0 > 0, consider the extreme cases of n1 = 0 and n1 =∞. (While the procedure
is not implementable for n1 = ∞, it illustrates the case when the surviving systems are
heavily sampled.) When n1 = 0, there is no second stage and the procedure simply selects
the system with the highest sample mean based on the first n1 samples. Since systems are
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simulated independently, the probabilities of selecting Systems 2 and 3 will decrease as µ1

increases.
On the other hand, when n1 = ∞, the procedure effectively always makes a correct

selection from between whichever two systems survive screening. Therefore the probability
that System 1 is selected is zero, while the probability that System 3 is selected is equal to
the probability that System 3 survives screening. System 3 survives screening unless Systems
1 and 2 both advance to the second stage. Again, since systems are sampled independently,
the event that Systems 1 and 2 both advance increases as µ1 increases. This implies that the
probability that System 3 is selected decreases as µ1 increases. Thus the probability that
System 2 is selected must increase as µ1 increases. It is possible to then find a finite value
of n1 for which this relationship holds and thereby conclude that Condition (C6) does not
hold for Procedure 2.

An example of a selection procedure that may violate Condition (C6) is that of Fair-
weather [1968], which closely resembles Procedure 2. The NSGS procedure of Nelson et al.
[2001] might also fail to satisfy Condition (C6); selecting a high value of α0 for the screening
stage and a small value of α1 for the selection stage would lead to large second-stage sample
sizes, possibly mimicking the behavior of Procedure 2 for the case n1 =∞.

The proof of Condition (C6) suggests some ways that the condition can be weakened
while still implying Goal PGS. First, instead of requiring that the probability of selecting
each individual system is monotone with respect to the performances of other systems, it
suffices that the probability of selecting from among a subset of systems is monotone. Second,
this monotonicity condition only needs to hold for arms that are inferior to System i. Putting
these ideas together, we present a more general condition with greater potential for holding
for sequential selection procedures.

Theorem 3 Let R be a selection procedure achieving Goal PCS-PZ. Then R also achieves
Goal PGS if

(C7) For all systems i = 1, . . . , k, Pµ(Select some j for which µj < µi) is nonincreasing in
µi.

Proof of Theorem 3. The proof follows that of Theorem 2 with a few small changes.
Fix an arbitrary configuration µ and define G, B, and µ(1) as in the proof of Theorem 2.

Since selection procedures must select a single system,∑
j:µj<µ[|B|+1]

Pµ(Select j) +
∑

j:µj≥µ[|B|+1]

Pµ(Select j) = 1

=
∑

j:µj<µ[|B|+1]

Pµ(1)(Select j) + Pµ(1)(Select [|B|+ 1]) +
∑

j:µj≥µ[|B|+1]

j 6=|B|+1]

Pµ(1)(Select j).

By Condition (C7), ∑
j:µj<µ[|B|+1]

Pµ(Select j) ≤
∑

j:µj<µ[|B|+1]

Pµ(1)(Select j),
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because the performance of system [|B|+ 1] has been decreased. Thus∑
j:µj≥µ[|B|+1]

Pµ(Select j) ≥ Pµ(1)(Select [|B|+ 1]) +
∑

j:µj≥µ[|B|+1]

j 6=[|B|+1]

Pµ(1)(Select j).

The left-hand side is Pµ(GS) while the right-hand side is Pµ(1)(Select [|B|+ 1]) + Pµ(1)(GS).
Then since Pµ(1)(Select [|B|+ 1]) ≥ 0, we have

Pµ(GS) ≥ Pµ(1)(GS).

The rest of the proof follows from that of Theorem 2. �
Condition (C7) states that increasing the performance of a given system does not in-

crease the probability that an inferior system is selected. In terms of PGS, this means that
increasing the performance of a bad system so that it becomes a good system will not de-
crease the probability that a good system is selected. This condition resolves the issue with
Procedure 2 where increasing the performance of a system increased the probability that
a superior system was selected; this relationship is permitted under Condition (C7). Ulti-
mately, Condition (C7) suffers from the same difficulties as Condition (C6), namely, deriving
monotonicity relationships for the probabilities of selecting (subsets of) systems.

3.4 Sequential Procedures

As pointed out in Section 3.3, lifting Goal PCS-PZ to Goal PGS for sequential selection pro-
cedures remains a challenge due to the complicated dependence among systems’ estimators.
One exception is the sequential (non-elimination) procedure P∗

B of Bechhofer et al. [1968]
for the case in which observations are normally distributed with known, common variance.
The P∗

B procedure iteratively takes one sample from each system and terminates as soon
as the posterior probability of correct selection exceeds 1− α, selecting the system with the
highest sample mean. For the P∗

B procedure, the posterior PCS is calculated as if the true
problem instance was a permutation of the slippage configuration, making it different from
the posterior PCS defined later in Section 6. The proof that the P∗

B procedure achieves
Goal PCS-PZ makes use of the fact that the posterior PCS in the slippage configuration is
a lower bound on the posterior PCS for the unknown, true configuration. Sievers [1972] and
Chiu [1977] proved that the P∗

B procedure also achieves Goal PGS by establishing that the
posterior PCS in the slippage configuration is also a lower bound on the posterior PGS for
the true configuration.

Aside from the P∗
B procedure of Bechhofer et al. [1968] and the Envelope procedure of

Ma and Henderson [2017]—both of which do not eliminate systems—few sequential selec-
tion procedures have been proven to achieve Goal PGS. For example, the proofs of Goal
PGS presented for the KN procedure of Kim and Nelson [2001] and the SSM procedure of
Pichitlamken et al. [2006] are incorrect. Furthermore, the proof of Goal PGS for the TSSD
procedure of Osogami [2009] holds only for some parameter settings. Some sequential proce-
dures instead asymptotically achieve Goal PGS, e.g., the bootstrapping procedure of Lee and
Nelson [2017] and one of the indifference-zone-free procedures of Fan et al. [2016]. Other re-
cent sequential selection procedures, e.g., those of Kim and Dieker [2011], Frazier [2014], and
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Zhong and Hong [2017], achieve Goal PCS-PZ but lack proofs of Goal PGS. Alternatively,
Kao and Lai [1980] and Jennison et al. [1982] show that some sequential selection procedures
achieving Goal PCS-PZ, e.g., the procedure of Paulson [1964], can be modified to achieve
Goal PGS. The proposed modifications, however, involve widening the continuation regions,
resulting in excessively conservative procedures.

Putting aside the question of whether the aforementioned procedures achieve Goal PGS,
a crucial consideration is whether they would do so efficiently for configurations in the in-
difference zone. Many sequential selection procedures are designed to eliminate systems—or
terminate—when the estimators of pairs or groups of systems become well-separated, sug-
gesting that these procedures might require more observations to distinguish between systems
with similar performances. For example, the BIZ procedure of Frazier [2014] eliminates sys-
tems from contention and terminates when the posterior probability of correct selection for
a surviving system exceeds a threshold. Similarly, the procedure of Kim and Dieker [2011]
eliminates systems when a Brownian motion process observed in discrete time exits an el-
liptical continuation region. Thus for configurations with multiple best systems, these two
procedures might be expected to take, on average, more observations before these conditions
for eliminating systems are met. Other sequential selection procedures that use pairwise
comparisons to eliminate systems, e.g., the KN procedure of Kim and Nelson [2001] and the
procedure of Zhong and Hong [2017], might also be expected to take more observations for
problem instances in the indifference zone; however, these two procedures exert some control
on the maximum number of observations that are taken before terminating.

It remains an open question whether taking more observations for problem instances in
the indifference zone is a consequence of the IZ formulation, or if it is instead an unavoidable
byproduct of Goal PGS.

4 Subset-Selection Procedures

In contrast to selection procedures, which choose a single system as the best, subset-selection
procedures return a random subset of systems I ⊆ {1, . . . , k}. Subset-selection procedures
can be used to efficiently screen out inferior systems when the number of systems is large.
Because subset-selection procedures were developed as an alternative to the indifference-
zone formulation, they are often designed to give guarantees under any configuration. For
example, the subset-selection procedure of Gupta [1965] for known common variance provides
a guarantee of the form

Pµ(CSS) ≥ 1− α for all µ, (Goal PCSS)

where the event of correct subset selection is defined as CSS := {[k] ∈ I}. This definition of
correct subset selection slightly differs from that of correct selection for selection procedures.
When there is a unique best system, correct subset selection is the event that it is in the
returned subset. When there are multiple best systems, however, correct subset selection
is the event that a particular best system is in the returned subset. Goal PCSS therefore
states that for each best system, the probability that it will be in the returned subset is at
least 1− α. This is stronger than guaranteeing that at least one of the best systems will be
in the returned subset with probability at least 1− α.
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We can similarly define an IZ-inspired PCSS guarantee:

Pµ(CSS) ≥ 1− α for all µ ∈ PZ(δ). (Goal PCSS-PZ)

Some subset-selection procedures achieve Goal PCSS-PZ, e.g., the Screen-to-the-Best pro-
cedure of Nelson et al. [2001]. Because Goal PCSS-PZ is only with respect to configurations
in the preference zone, subset-selection procedures designed for this guarantee should be less
conservative than those designed for Goal PCSS in the sense that they either return smaller
subsets of systems or take fewer observations.

We define good subset selection as GSS := {∃i ∈ I s.t. µi > µ[k] − δ}, or equivalently
GSS := {G ∩ I 6= ∅}, the event that at least one good system is in the returned subset. A
guarantee on the probability of good subset selection is thus

Pµ(GSS) ≥ 1− α for all µ. (Goal PGSS)

Since the best system is always a good system, Goal PCSS implies Goal PGSS. The restricted
subset-selection procedure of Sullivan and Wilson [1989] is one example of a procedure that
achieves Goal PGSS. Good subset selection has alternatively been defined as the event that
all of the good systems are in the returned subset [Lam, 1986, Wu and Yu, 2008] or the event
that the returned subset contains only good systems [Desu, 1970, Santner, 1976]. Gao and
Chen [2015] and Kaufmann et al. [2016] study the related problem of identifying the top m
systems given a fixed sampling budget.

Subset-selection procedures are many and varied. For instance, some subset-selection
procedures take a fixed number of observations, specified by the user, while others take a
random number of observations over multiple stages. Subset-selection procedures also differ
in their rules for determining the set of returned systems based on the estimators of the
systems’ performances. Some subset-selection procedures return a fixed number of systems,
namely those with the m highest estimators, i.e., I = {i : Yi ≥ Y(k−m+1)} where Y(j) denotes
the jth lowest estimator and m is specified by the user in advance [Mahamunulu, 1967, Desu
and Sobel, 1968]. Other subset selection-procedures return systems whose estimators are
above a certain threshold that depends on the highest estimator, i.e., I = {i : Yi ≥ Y(k)− d}
for some constant d ≥ 0 [Gupta, 1965, Dudewicz and Dalal, 1975].

Santner [1975] proposed a formulation known as restricted subset selection that integrates
the fixed-number and fixed-threshold selection rules by defining the subset of returned sys-
tems as

I = {i : Yi ≥ max(Y(k−m+1), Y(k) − d)}.

The cases d = ∞ and m = k reduce to fixed-number and fixed-threshold selection rules,
respectively. The procedure of Sullivan and Wilson [1989] is an example of a restricted
subset-selection procedure.

Other subset-selection procedures employ a selection rule that compares systems pairwise
and retains the subset

I = {i : Yi ≥ Yj −Wij for all j 6= i},

where Wij = Wji ≥ 0 is a function of the observations that yielded Yi and Yj. In the Screen-
to-the-Best procedure of Nelson et al. [2001], Wij is a function of the sample variances of
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Systems i and j. Under this selection rule, we say that System j eliminates System i, denoted
by j → i, if Yi < Yj −Wij.

When it comes to proving Goal PGSS for subset-selection procedures that use pairwise
comparisons, an important property is transitive eliminations; i.e., if System i eliminates
System j and System j eliminates System `, then System i also eliminates System `. Tran-
sitive eliminations imply that for any System j ∈ Ic, there exists a System i ∈ I such that
i → j, a helpful result in proving Goal PGSS [Nelson et al., 2001]. A sufficient condition
for transitive eliminations is that Wij + Wj` ≥ Wi` for all i 6= j 6= `. This triangle inequal-
ity, however, is not automatically satisfied for subset-selection procedures that use pairwise
comparisons; for example, it does not hold for the Screen-to-the-Best procedure when δ > 0.

As in Section 3, we present sufficient conditions under which subset-selection procedures
that achieve Goal PCSS-PZ also achieve Goal PGSS. Theorems 4 and 5 show how Conditions
(C3) and (C6) can be adapted to subset selection; their proofs can be found in Appendices
A.5 and A.6, respectively.

Theorem 4 Let S be a subset-selection procedure achieving Goal PCSS-PZ.
If S uses restricted subset-selection with I = {i : Yi ≥ max{Y(k−m+1), Y(k)−d}}, then S

also achieves Goal PGSS if

(C8) For all subsets A ⊂ {1, . . . , k}, the joint distribution of the estimators Yi for i ∈ A
does not depend on µj for all j /∈ A.

If S uses pairwise comparisons with I = {i : Yi ≥ Yj −Wij for all j 6= i} where Wij +
Wj` ≥ Wi` for all i 6= j 6= `, then S also achieves Goal PGSS if

(C9) For all subsets A ⊂ {1, . . . , k}, the joint distribution of the terms Yi for i ∈ A and Wi`

for i, ` ∈ A does not depend on µj for all j /∈ A.

Conditions (C8) and (C9) are satisfied for many subset-selection procedures because
systems are commonly simulated independently, yielding independent estimators, e.g., the
procedures of Mahamunulu [1967], Desu and Sobel [1968], and van der Laan [1992].

Condition (C6) can also be modified to work for subset-selection procedures in a way
that does not require assumptions about the selection rule, as was the case in Theorem 4.

Theorem 5 Let S be a subset-selection procedure achieving Goal PCSS-PZ. Then S also
achieves Goal PGSS if

(C10) For every subset A ⊂ {1, . . . , k}, Pµ(A ∩ I 6= ∅) is nondecreasing in µi for all i ∈ A
and nonincreasing in µj for all j /∈ A when all other components of µ are held fixed.

Condition (C10) is a generalization of Condition (C6) of Theorem 2 since for singleton
subsets A and the choice of I = {i : Yi > Yj for all j 6= i}, Condition (C10) reduces to
Condition (C6). Condition (C6) alone is not sufficient to lift Goal PCSS-PZ to Goal PGSS
because the proof of Theorem 2 relies on the fact that

∑k
i=1 Pµ(Select i) = 1, a statement

that no longer holds when (Select i) is replaced by (i ∈ I).
A property related to Conditions (C10) and (C6) is that of strong monotonicity, as

defined by Santner [1975]. A subset-selection procedure is said to be strongly monotone in
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System i if Pµ(i ∈ I) is nondecreasing in µi and nonincreasing in µj for all j 6= i when all
other components of µ are held constant. The condition that a subset-selection procedure
is strongly monotone in all systems i = 1, . . . , k is equivalent to Condition (C10) with the
added restriction that A is a singleton subset, and for the particular choice of I := {i : Yi >
Yj for all j 6= i}, it is equivalent to Condition (C6). That is, Condition (C6) is weaker than
the condition of strong monotonicity in all systems, which in turn is weaker than Condition
(C10).

Subset-selection procedures have also been used for the purpose of screening out inferior
systems before running a selection procedure [Nelson et al., 2001, Boesel et al., 2003]. If
the observations used for the subset-selection stage are discarded and new observations are
taken for the selection stage, then the results of Sections 3 and 4 can be used in tandem to
prove an overall PGS guarantee. If instead the observations from the subset-selection stage
are reused, the statistical analysis becomes more complicated; see, for example, the results
of Nelson et al. [2001] for Goal PCS-PZ. How the results of Sections 3 and 4 can be combined
in this setting to prove an overall PGS guarantee is left as a direction for future research.

5 Other Proof Methods

Extending Goal PCS-PZ is not the only way to prove Goal PGS for selection procedures. In
this section, we review two other methods that have been used: multiple comparisons and
concentration inequalities. Although these two approaches make use of fundamental ideas
about good selection, they tend to be inherently conservative. Consequently, using these
ideas in designing a selection procedure to achieve Goal PGS can result in an inefficient
procedure.

5.1 Multiple Comparisons

In Section 3.3, we remarked that Nelson and Matejcik [1995] provide a shift-invariant as-
sumption resembling Condition (C5) that implies Goal PGS. In their proof, it is first shown
that for a selection procedure achieving Goal PCS-PZ and satisfying Assumption (2), the
following joint probability statement holds:

Pµ(Y[k] − Yi − (µ[k] − µi) > −δ, for all i 6= [k]) ≥ 1− α for all µ. (5)

From Assumption (2) and Goal PCS-PZ, for an arbitrary configuration µ,

Pµ(Y[k] − Yi − (µ[k] − µi) > −δ, for all i 6= [k])

= Pµsc(Y sc
[k] − (Y sc

i − µ[k] + µi + δ)− (µ[k] − µi) > −δ, for all i 6= [k])

= Pµsc(Y sc
[k] − Y sc

i > 0, for all i 6= [k])

≥ 1− α.
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Goal PGS then follows directly from Equation (5):

Pµ(Y[k] − Yi − (µ[k] − µi) > −δ, for all i 6= [k]) = Pµ(µi > µ[k] − δ + (Yi − Y[k]), for all i 6= [k])

= Pµ(µi > µ[k] − δ + (Yi − Y[k]), for all i = 1, . . . , k)

≤ Pµ(µK > µ[k] − δ + (YK − Y[k]))
≤ Pµ(µK > µ[k] − δ)
= Pµ(GS),

where the first inequality comes from considering only the statement for i = K, and the
second inequality comes from the definition of K as the index of the system with the highest
estimator.

The use of Equation (5) in proving Goal PGS indicates that the fixed-confidence guaran-
tee for good selection is related to the problem of obtaining fixed-width confidence intervals
for the differences in performances between pairs of systems. Specifically, Equation (5) is a
joint probability statement about the differences between each system’s estimator and that
of the best. It is closely related to the idea of constructing simultaneous confidence intervals
for the differences between each system’s performance and the best of the other systems,
i.e., µi − maxj 6=i µj, for i = 1, . . . , k [Hsu, 1984]. In the statistics community, this kind of
inference is referred to as multiple comparisons with the best (MCB); see Hsu [1996] and
Hochberg and Tamhane [2009] for helpful references.

Matejcik and Nelson [1995] and Nelson and Matejcik [1995] show that some IZ-inspired
selection procedures, e.g., those of Dudewicz and Dalal [1975], Rinott [1978], and Clark and
Yang [1986], deliver Goal PCS-PZ and simultaneously allow MCB inference with the same
confidence, thereby achieving Goal PGS. Nelson and Goldsman [2001] and Ni et al. [2017] also
use MCB to prove Goal PGS for some of their procedures. The selection procedures of Yang
and Nelson [1991] and Nelson and Staum [2006] that use control variates also achieve Goal
PGS as a consequence of MCB. Nelson and Banerjee [2001] use similar multiple comparisons
statements to obtain a lower confidence bound on PGS after a selection procedure has been
run.

Although MCB statements have been used to prove Goal PGS for many selection proce-
dures, this approach has several limitations. First, if the objective is to design a procedure
that achieves Goal PGS, working with MCB statements will result in conservative—and
therefore less efficient—procedures. Second, ensuring Equation (5) holds with a prespecified
confidence is hard to achieve for procedures that take observations sequentially. A recent
development in this area is the idea of using bootstrapping to estimate the probabilities
of multiple comparison events and then stop sampling when the estimated probability ex-
ceeds 1 − α [Lee and Nelson, 2017]. This bootstrapping approach sacrifices any kind of
finite-sample-size guarantee, but can deliver different asymptotic versions of Goal PGS.

5.2 Concentration Inequalities

In the multi-armed bandit community, it is usually assumed that the marginal distributions
Fi have bounded support or are sub-Gaussian with known scale, i.e., a known upper bound
on the variance. These regularity conditions control the large-deviations behavior of the
estimators and therefore allow the use of concentration inequalities. A standard approach for
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proving Goal PGS under these assumptions is as follows: First, use concentration inequalities
to bound the probabilities that the estimators Yi differ from their true parameter values µi by
a fixed amount. Next, obtain a bound on the probability that a given bad system outperforms
the best system. Finally, use a union bound to obtain an upper bound on the probability of
making a bad selection.

As an illustration, consider the standard multi-armed bandit setting where the obser-
vations of each system take values in the interval [0, 1], the performance of System i is
µi = E[Xij], and systems are simulated independently. For this problem, Even-Dar et al.
[2006] propose a “Naive” algorithm achieving Goal PGS that takes n = (2/δ2) ln(2k/α)
observations from each system and selects the system with the highest sample mean, Yi =
n−1

∑n
j=1Xij.

For a bad system, i, to be selected instead of the best system, [k], then either Yi > µi+δ/2
or Y[k] < µ[k] − δ/2, or both. Therefore

Pµ(Yi > Y[k]) ≤ Pµ(Yi > µi + δ/2 or Y[k] < µ[k] − δ/2)

≤ Pµ(Yi > µi + δ/2) + Pµ(Y[k] < µ[k] − δ/2)

≤ 2 exp(−2n(δ/2)2),

where the last inequality is the result of applying Hoeffding’s inequality twice. From the
choice of n, Pµ(Yi > Y[k]) ≤ α/k. Another union bound shows that the “Naive” algorithm
achieves Goal PGS:

1− Pµ(GS) ≤ Pµ
(
∪i 6=[k]{Yi > Y[k]}

)
≤
∑
i 6=[k]

Pµ(Yi > Y[k]) ≤ (k − 1)
α

k
≤ α.

Aside from Hoeffding’s inequality, other concentration inequalities such as Chernoff’s
bound can be used in the same way if the marginal distributions are sub-Gaussian with
known scale. While concentration inequalities are useful in the above proof of Goal PGS,
this approach still requires the use of the conservative Bonferroni inequality to lift state-
ments about pairwise comparisons to one about good selection. Some multi-armed bandit
algorithms for the full-exploration problem eliminate systems in stages, such as the Succes-
sive Elimination and Median Elimination algorithms of Even-Dar et al. [2006]. For these
algorithms, concentration inequalities are used similarly to analyze pairwise comparisons
and then combined with other conservative inequalities to bound the probability of making
a bad selection.

In the R&S literature, the standard assumption that observations are normally dis-
tributed does not by itself allow the use of concentration inequalities, unless the variances
are known or there are known upper bounds on the variances. Still, the approach of forming
confidence bands around each alternative’s estimator can be leveraged to yield a proof of
Goal PGS, as is done for the Envelope procedure of Ma and Henderson [2017]. The Envelope
procedure designs upper and lower confidence limits for the performances of each system in
such a way that with probability exceeding 1 − α, the upper confidence limit of the true
best system stays above its performance and, simultaneously, the lower confidence limits
of the other systems stay below their performances throughout the entire procedure. The
procedure obtains observations from systems and updates the confidence limits over time.
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Once the lower confidence limit of the estimated best system exceeds the highest upper confi-
dence limit of the other systems minus δ, the procedure terminates. Selecting the alternative
with the best estimated performance thereby guarantees that a good selection is made with
probability exceeding 1− α.

6 Bayesian PGS

In Sections 2–5, we studied the R&S problem from the frequentist perspective in which the
problem instance is assumed to be fixed and the probability is with respect to repeated runs of
a procedure. Alternatively, the R&S problem has been studied from a Bayesian perspective
[Berger and Deely, 1988, Gupta and Miescke, 1996]. Under the Bayesian framework, the
decision-maker’s a priori uncertainty about the unknown problem instance is described by
a prior distribution on the parameters of the joint distribution F . By taking observations,
the decision-maker is able to update their beliefs in the form of a posterior distribution for
these parameters. The resulting posterior distribution on the problem instance is then used
to make statements about the (Bayesian) probability of making a good selection by selecting
a given system.

To make these ideas more concrete, we will consider the standard Bayesian R&S setting
in which observations are assumed to be normally distributed, i.e., Xij ∼ N (Wi, σ

2
i ) for i =

1, . . . , k where the mean, Wi, and variance, σ2
i , are treated as random variables. Furthermore,

the performance of a given system is commonly taken to be its mean performance, i.e.,
µi = E[Xij] = Wi. Hence the (random) vector W = (W1, . . . ,Wk) represents the problem
instance. When the systems are simulated independently, a normal-gamma conjugate pair
on (Wi, 1/σ

2
i ) simplifies the computation of the joint posterior distribution [Chick and Inoue,

2001b]. If the systems are instead simulated using common random numbers and the joint
distribution of the observations is a multivariate normal, a normal-Wishart conjugate pair
for the mean vector and precision matrix similarly simplifies the analysis [Chick and Inoue,
2001a].

Under this setup, the marginal posterior distribution of W is a multivariate normal or
multivariate t-distribution, depending on whether the variances are known or unknown.
From this posterior distribution, a probability can be assigned to the event that a given
system, i, is good:

PGSBayes
i = P(Wi > Wj − δ, for all j 6= i | E), (6)

where E denotes the evidence, i.e., the collected observations. The posterior PGS of System
i, defined in Equation (6), can be regarded as the probability that—based on the evidence—
the random problem instance W is one for which the fixed System i is good. Conversely,
the frequentist notion of PGS referred to in our definition of Goal PGS is the probability
that the random system chosen by a selection procedure will be good for a fixed problem
instance.

Computing the posterior PGS in Equation (6) involves integrating the posterior distri-
bution of W over the region in which the performance of System i is no worse than the
maximum of the performances of the other systems minus δ—a polyhedron described by the
k−1 inequalities Wi−Wj > −δ for all j 6= i. For small numbers of systems, this integral can
be computed numerically while for larger numbers of systems, it can be estimated via Monte
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Carlo integration. The Monte Carlo approach, however, introduces a frequentist error in
the estimation that complicates statistical conclusions. Another approach is to use Slepian’s
inequality [Slepian, 1962] to cheaply compute a lower bound on the posterior PGS for a given
system [Branke et al., 2007].

An important advantage of the Bayesian formulation is that the posterior PGS can be
computed for any system at any time, meaning Bayesian selection procedures can use it in
a stopping condition. Under the frequentist formulation, repeatedly looking at the data to
estimate the frequentist PGS could invalidate the procedure’s statistical guarantees. For
Bayesian selection procedures, the posterior PGS can be used in a stopping condition in
several ways. For example, a procedure could terminate when the posterior PGS of the
system with the highest estimator exceeds 1 − α, or when the maximum posterior PGS of
any system exceeds 1 − α. The former of these two approaches requires less computation
but could lead to more observations being taken before termination. Branke et al. [2005]
propose using the lower bound from Slepian’s inequality for the posterior PGS of the system
with the highest estimator as a stopping rule for the expected value of information (VIP)
[Chick and Inoue, 2001b] and optimal computing budget allocation (OCBA) [Chen et al.,
2000] procedures. The various top-two sampling algorithms of Russo [2016] could also be
modified to use the posterior PGS in a stopping condition.

By allowing the posterior PGS to be used in a stopping condition, the Bayesian formula-
tion offers much flexibility in how selection procedures allocate observations across systems,
thereby enabling greater efficiency. In contrast, frequentist selection procedures must be
designed to take observations in a way that will guarantee Goal PGS for all configurations.
Consequently, frequentist procedures will be inherently conservative for some problem in-
stances. Empirical experiments have shown that Bayesian selection procedures tend to be
more efficient than their frequentist counterparts [Branke et al., 2007].

7 Conclusions and Future Work

In this paper, we give a comprehensive overview of fixed-confidence, fixed tolerance guaran-
tees, with the objective of reorienting the operations research community towards designing
selection-of-the-best procedures with such guarantees. We point out several flaws of the
more popular IZ-inspired PCS guarantee and clarify sufficient conditions under which it is
equivalent to the PGS guarantee. Some of the sufficient conditions for selection procedures
are then modified to work for subset-selection procedures. We also survey past results from
the R&S and multi-armed-bandit literature to present a variety of approaches for proving
PGS guarantees.

A strength of the multi-armed-bandit literature is the provision of complexity bounds
exploring the computational requirement of a procedure analytically. Section 3.4 comes
close to discussing this matter, but very little has been done in the R&S literature. Nearly
matching complexity bounds have been developed in Ma and Henderson [2018], building on
results in Jennison et al. [1982] and Mannor and Tsitsiklis [2004], but presumably much
more can be done.

It remains an open question whether some of the state-of-the-art selection procedures
designed under the IZ formulation also have PGS guarantees. Moreover, there is an op-
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portunity for designing procedures that deliver the PGS guarantee more efficiently than
existing IZ-inspired procedures. Other approaches that merit further investigation include
using bootstrapping to obtain asymptotic guarantees and using posterior PGS as a stopping
condition for delivering the Bayesian PGS guarantee.

Although not discussed in this paper, fixed-confidence, fixed tolerance guarantees can be a
worthy aim for stochastic optimization algorithms for problems with continuous domains. A
future research direction in this setting is the design of algorithms that search over the space
of solutions and deliver such guarantees upon termination. Proving guarantees under this
framework would likely require some assumptions about the distribution of the observation
error and the structure of the unknown objective function.
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Appendix

A.1 Proof of Proposition 1

We first prove that Procedure 1 achieves Goal PCS-PZ.
We modify a proof for the procedure of Bechhofer [1954], shown in Kim and Nelson

[2006]. For any arbitrary µ ∈ PZ(δ),

Pµ(CS) = Pµ(Select [k])

≥ Pµ

(
Y[k] − Yi
σ
√

2/n
> r for all i 6= [k]

)

= Pµ

(
Yi − Y[k] − (µi − µ[k])

σ
√

2/n
< −r −

µi − µ[k]

σ
√

2/n
for all i 6= [k]

)

≥ Pµ

(
Yi − Y[k] − (µi − µ[k])

σ
√

2/n
< −r +

δ

σ
√

2/n
for all i 6= [k]

)

= P

(
Zi < −r +

δ

σ
√

2/n
for all i 6= [k]

)
≥ P(Zi < hB for all i 6= [k])

= 1− α,

where (Zi : i 6= [k]) have a joint multivariate normal distribution with means 0, variances 1,
and common pairwise correlations 1/2. The first inequality comes from the fact that System
[k] will be selected if Y[k] > maxi 6=[k] Yi + rσ

√
2/n. The second inequality comes from the

fact that µ[k] − µi ≥ δ since µ ∈ PZ(δ). The last inequality follows from the relationship
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between r, n and hB and the last equality follows from the definition of hB by Bechhofer
[1954].

We next show that Procedure 1 does not achieve Goal PGS for k > 2.
Consider the configuration µ̃ defined by µ̃k = µ̃k−1 and µ̃i = µ̃k −∆ for i = 1, . . . , k − 2

where ∆ > δ. That is, Systems k and k− 1 are tied as the best and Systems 1 through k− 2
are all bad. From this construction, µ̃ ∈ IZ(δ).

1− Pµ̃(GS) = Pµ̃(Select neither k − 1 nor k)

≥ Pµ̃

(
|Yk − Yk−1|
σ
√

2/n
< r and max(Y1, . . . , Yk−2) < min(Yk−1, Yk)

)

≥ 1− Pµ̃

(
|Yk − Yk−1|
σ
√

2/n
≥ r

)
− 2(k − 2)Pµ̃(Y1 > Yk)

= 1− 2Φ(−r)− 2(k − 2)Pµ̃

(
Yk − Y1 − (µk − µ1)

σ
√

2/n
< −µk − µ1

σ
√

2/n

)

= 1− 2Φ(−r)− 2(k − 2)Φ

(
−∆

σ
√

2/n

)
.

The first inequality follows from the fact that one of the systems 1 through k − 2 will
be selected if systems k − 1 and k have the two highest estimators and they are within
rσ
√

2/n of each other. The second inequality follows from applying Boole’s inequality

over the intersection of {|Yk − Yk−1| < rσ
√

2/n} and the 2(k − 2) events contained in
{max(Y1, . . . Yk−2) ≤ min(Yk−1, Yk)}.

We can now take r so large that 2Φ(−r) is as small as desired. Fixing r also fixes the
sample size n. We can then take ∆ so large that 2(k − 2)Φ(−∆/(σ

√
2/n)) is as small as

desired. Thus we can make 1− Pµ̃(GS) arbitrarily close to 1, while retaining Goal PCS-PZ.
�

A.2 Proof of Corollary 1

We prove the result of Corollary 1 for each of the four conditions.
Direct proofs that selection procedures achieving Goal PCS-PZ and satisfying either

Condition (C2) or (C3) also achieve Goal PGS can be found in those of Lemmas 2 and 1,
respectively, of Guiard [1996]. Instead, we show that Conditions (C2) and (C3) each imply
Condition (C1).

Proof of Condition (C2) implies Condition (C1). Fix an arbitrary subset A and configu-
rations µ and µ̃ as specified in the statement of Condition (C1). Fix an arbitrary i ∈ A and
set B1 = {i}, B2 = A\{i}, and IP = {(i, j) : j ∈ B2}, i.e. IP = B1 × B2. Then for all index
pairs (i, j) in IP, µi − µj = µ̃i − µ̃j since i, j ∈ A. Thus by Condition (C2),

Pµ(Yi > Yj for all j ∈ A\{i}) ≥ Pµ̃(Ỹi > Ỹj for all j ∈ A\{i}).

Since the choice of i ∈ A was arbitrary, we simultaneously have that

Pµ(Yi = max
j∈A

Yj) ≥ Pµ̃(Ỹi = max
j∈A

Ỹj), for all i ∈ A. (7)
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where we have used the fact that ties in the estimators Yj occur with probability zero.
Summing both sides of (7) over all i ∈ A gives 1 = 1. Thus it must be the case that

Pµ(Yi > Yj for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹj for all j ∈ A\{i}) for all i ∈ A.

Since the choices of A, µ, and µ̃ were arbitrary, we have proven the result. �
Proof of Condition (C3) implies Condition (C1). Fix an arbitrary subset A and config-

urations µ and µ̃ as specified in the statement of Condition (C1). Take S = A. Since µ and

µ̃ only differ for indices i /∈ A, Condition (C3) implies that YA
d
= ỸA where YA (respectively

ỸA) denotes the vector of estimators Yi (Ỹi) for i ∈ A. Therefore

Pµ(Yi > Yj for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹj for all j ∈ A\{i}) for all i ∈ A.

Since the choices of A, µ, and µ̃ were arbitrary, we have proven the result. �
Proof of Condition (C4) implies Condition (C1). From Condition (C4), the estimators

Y1, . . . , Yk are mutually independent and so the joint distribution of the estimators is the
product of the marginal distributions. Therefore for an arbitrary subset A ⊆ {1, . . . , k}, the
joint distribution of Yi for i ∈ A is the product of the marginal distributions for Yi for i ∈ A.
The remainder of the proof follows from that of Condition (C3). �

Proof of Condition (C5) implies Condition (C1). Fix an arbitrary subset A and con-
figurations µ and µ̃ as specified in the statement of Condition (C1). By Condition (C5),

YA − µA
d
= ỸA − µ̃A where µA is the vector of components µi for i ∈ A. Since µi = µ̃i for all

i ∈ A, µA = µ̃A and so YA
d
= ỸA. Therefore

Pµ(Yi > Yj for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹj for all j ∈ A\{i}) for all i ∈ A.

Since the choices of A, µ, and µ̃ were arbitrary, we have proven the result. �

A.3 Relationships of Conditions in Corollary 1

(C1)
↗ ↑

(C3) (C2) (C6)
↑ ↖ ↑ ↗

(C4) (C5)

Figure 1: Relations of Conditions of Corollary 1 and Theorems 1 and 2.

Figure 1 shows the relationships among the conditions in Corollary 1 and Theorems 1
and 2. Conditions (C1) and (C6) are the most general. We prove the four relationships in
Figure 1 that were not proven in Corollary 1, namely (i) (C4) implies (C3), (ii) (C5) implies
(C6), (iii) (C5) implies (C2), and (iv) (C5) implies (C3).
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Proof of Condition (C4) implies Condition (C3). From Condition (C4), the estimators
Y1, . . . , Yk are mutually independent and so the joint distribution of the estimators is the
product of the marginal distributions. Therefore for an arbitrary subset A ⊂ {1, . . . , k},
the joint distribution of Yi for i ∈ A is the product of the marginal distributions for Yi for
i ∈ A. This joint distribution thus does not depend on µj for j /∈ A, hence Condition (C3)
is satisfied. �

Proof of Condition (C5) implies Condition (C6). Fix an arbitrary configuration µ and
arbitrary system i ∈ {1, . . . , k}. For arbitrary ` 6= i, define µ̃ = µ+ εe` for ε > 0 where e` is

k-vector of zeros with a one as the `th element. By Condition (C5), Y + εe`
d
= Ỹ where Y

(respectively Ỹ ) is the complete vector of estimators Yi (Ỹi) for i = 1, . . . , k. Thus

Pµ̃(Select i) = Pµ̃(Ỹi > Ỹj for all j 6= i) = Pµ(Yi > Yj for all j 6= i, ` and Yi > Y` + ε)

which is nonincreasing in ε. Since increasing ε is equivalent to increasing the true mean of
the `th system, we have shown that Pµ(Select i) is nonincreasing in µ` for all ` 6= i. Then
since the choice of i was arbitrary, we have proven the result. �

Proof of Condition (C5) implies Condition (C2). Define arbitrary B1, B2, and IP as in
the statement of Condition (C2). Using the substitutions Z = Y − µ and Z̃ = Ỹ − µ̃,

Pµ̃(Ỹi > Ỹj, for all (i, j) ∈ IP) = P(Z̃i + µ̃i > Z̃j + µ̃j, for all (i, j) ∈ IP)

= P(Z̃i + (µ̃i − µ̃j) > Z̃j, for all (i, j) ∈ IP)

≥ P(Z̃i + (µi − µj) > Z̃j, for all (i, j) ∈ IP),

where the last inequality follows from the fact the µ̃i− µ̃j ≥ µi− µj for all (i, j) ∈ IP. From

Condition (C5), Z̃
d
= Z. Thus

P(Z̃i + (µi − µj) > Z̃j, for all (i, j) ∈ IP) = P(Zi + (µi − µj) > Zj, for all (i, j) ∈ IP)

= Pµ(Yi > Yj, for all (i, j) ∈ IP).

Putting everything together, we have

Pµ̃(Ỹi > Ỹj, for all (i, j) ∈ IP) ≥ Pµ(Yi > Yj, for all (i, j) ∈ IP).

Since the choice of B1, B2 and IP was arbitrary, Condition (C2) holds. �
Proof of Condition (C5) implies Condition (C3). From Condition (C5), the random

vector Z = Y −µ has a distribution H(z) that does not depend on µ. Thus for an arbitrary
set A, the distribution of ZA := (Zi : i ∈ A) does not depend on any µj for j /∈ A. Therefore
Condition (C3) is satisfied. �

A.4 Proof of PGS Guarantee of Sobel and Huyett [1957]
Procedure

Sobel and Huyett [1957] presented tables for the common number of observations needed
from each of k systems with Bernoulli-distributed rewards in order to select the system with
the highest success probability µi with high probability. The procedure takes n observations
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from each system, calculates the average number of successes, i.e., Yi = n−1
∑n

j=1Xij, and
selects the system with the highest estimator. In the event of ties, it selects at random from
among the tied systems. The procedure is designed to deliver Goal PCS-PZ.

Systems are sampled independently and therefore the estimators are independent, im-
plying that Condition (C4) is satisfied. Yet the result of Corollary 1 cannot be immediately
applied since the sample means of Bernoulli observations are discrete random variables. Most
of the proof that Condition (C4) and Goal PCS-PZ imply Goal PGS can still be used in this
setting, but the issue of tied estimators must be handled.

Let Z = (Z1, . . . , Zk) be a random permutation of (1, . . . , k) that is generated before the
experiment. Thus Z is independent of the observations Xij and the estimators Yi. When
there are multiple systems that are tied for having the largest estimator, the procedure will
select the one having the highest Zi among them. Because the permutation Z is chosen
uniformly at random, this tie-breaking rule is equivalent to choosing uniformly from among
the tied systems.

Fix an arbitrary configuration µ ∈ IZ(δ). Because of the restrictions that µi ∈ [0, 1] for
all i = 1, . . . , k, it must be the case that µ[k] ≥ δ, otherwise all systems would be good. For
this configuration, µ, define G, B, and µ∗ accordingly. From the definition of the event of
good selection for the procedure,

Pµ(GS) ≥ Pµ
(
{Y[k] > Yi for all i ∈ B}
∪ {Y[k] ≥ Yi for all i ∈ B and Y[k] = Yj for some j ∈ B (8)

and Z[k] > Zi for all i ∈ T ([k]) ∩ B}
)
,

where T ([k]) denotes the set of systems other than system [k] whose estimators are tied with
Y[k], i.e., T ([k]) := {i 6= [k] : Yi = Y[k]}.

The first term on the right-hand side of Inequality (8) is the event that System [k] clearly
outperforms all of the bad systems. Thus no matter the performance of the other good
systems, a bad system will not be selected. The second term on the right-hand side of
Inequality (8) is the event that the best system performs no worse than all the bad systems,
ties at least one of them, and is preferred to all tying bad systems based on the tie-break
ranking.

By Condition (C4), the joint distribution of the estimators Yi for i ∈ B ∪ {[k]} does not
depend of the performances µj for j ∈ G\{[k]}. Consequently, the distribution of T ([k])∩B
also does not depend on the performances µj for j ∈ G\{[k]}. Therefore we can relate the
probability of the event in Inequality (8) under configuration µ to that of a similar event
under configuration µ∗:

Pµ
(
{Y[k] > Yi for all i ∈ B}
∪{Y[k] ≥ Yi for all i ∈ B and Y[k] = Yj for some j ∈ B and Z[k] > Zi for all i ∈ T ([k]) ∩ B}

)
= Pµ∗

(
{Y ∗[k] > Y ∗i for all i ∈ B}

∪{Y ∗[k] ≥ Y ∗i for all i ∈ B and Y ∗[k] = Y ∗j for some j ∈ B and Z[k] > Zi for all i ∈ T ∗([k]) ∩ B}
)
,

where Y ∗i is the estimator of System i under configuration µ∗ and T ∗([k]) is the random
set of systems tied with System [k] under configuration µ∗. Here the index [k] is still with
respect to the systems’ performances in configuration µ and not µ∗.
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In addition,

Pµ∗
(
{Y ∗[k] > Y ∗i for all i ∈ B}
∪{Y ∗[k] ≥ Y ∗i for all i ∈ B and Y ∗[k] = Y ∗j for some j ∈ B and Z[k] > Zi for all i ∈ T ∗([k]) ∩ B}

)
≥ Pµ∗

(
{Y ∗[k] > Y ∗i for all i 6= [k]}

∪{Y ∗[k] ≥ Y ∗i for all i 6= [k] and Y ∗[k] = Y ∗j for some j 6= [k] and Z[k] > Zi for all i ∈ T ∗([k])}
)
.

(9)

We justify Inequality (9) by showing that every outcome on the right-hand side is con-
tained in the event on the left-hand side. For the first term on the right-hand side of
Inequality (9),

{Y ∗[k] > Y ∗i for all i 6= [k]} ⊆ {Y ∗[k] > Y ∗i for all i ∈ B}.

For the second term on the right-hand side of Inequality (9), we separate outcomes into two
cases. If Y ∗[k] = Y ∗j for some j ∈ B, then the outcome belongs to the event

{Y ∗[k] ≥ Y ∗i for all i ∈ B and Y ∗[k] = Y ∗j for some j ∈ B and Z[k] > Zi for all i ∈ T ∗([k]) ∩ B}.

If instead Y ∗[k] 6= Y ∗j for any j ∈ B, then the outcome belongs to the event

{Y ∗[k] > Y ∗i for all i ∈ B}.

Finally, from the definition of correct selection and Goal PCS-PZ,

Pµ∗
(
{Y ∗[k] > Y ∗i for all i 6= [k]}
∪{Y ∗[k] ≥ Y ∗i for all i 6= k and Y ∗[k] = Y ∗j for some j 6= [k] and Z[k] > Zi for all i ∈ T ∗([k])}

)
= Pµ∗(CS) ≥ 1− α.

Altogether, we have shown that Pµ(GS) ≥ 1−α, i.e., the procedure of Sobel and Huyett
[1957] achieves Goal PGS. �

A.5 Proof of Theorem 4

We prove the two conditions in Theorem 4 separately.
Proof of Condition (C8) in Theorem 4 for restricted subset-selection. Fix an arbitrary

configuration µ and define the subsets G and B and the configuration µ∗ accordingly. Then

1− α ≤ Pµ∗(CS) = Pµ∗(GS)

= Pµ∗{Y ∗[k] ≥ max{Y ∗(k−m+1), Y
∗
(k) − d}}

≤ Pµ∗{Y ∗[k] ≥ max{Y ∗〈|B|−m+2〉, Y
∗
〈|B|+1〉 − d}},

where Y ∗〈j〉 is the jth lowest among those for systems belonging to the subset B ∪ {[k]}.
Taking A = B ∪ {[k]} in Condition (C8),

Pµ∗{Y ∗[k] ≥ max{Y ∗〈|B|−m+2〉, Y
∗
〈|B|+1〉 − d}} = Pµ{Y[k] ≥ max{Y〈|B|−m+2〉, Y〈|B|+1〉 − d}}.
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We now partition the event on the right-hand side to factor in the estimators Yi for i ∈
G\{[k]}.

{Y[k] ≥max{Y〈|B|−m+2〉, Y〈|B|+1〉 − d}}
= {Y[k] ≥ max{Y〈|B|−m+2〉, Y〈|B|+1〉 − d} and Y[k] ≥ Yj ∀j ∈ G\{[k]}} (10)

∪ {Y[k] ≥ max{Y〈|B|−m+2〉, Y〈|B|+1〉 − d} and ∃j ∈ G\{[k]} s.t. Yj > Y[k]}.

For the first event on the right-hand side of Equation (10),

{Y[k] ≥ max{Y〈|B|−m+2〉, Y〈|B+1|〉 − d} and Y[k] ≥ Yj ∀j ∈ G\{[k]}} ⊆ {Y[k] ≥ max{Y(k−m+1), Y(k) − d}}
= {[k] ∈ I}.

For the second event on the right-hand side of Equation (10), let j′ = arg maxj∈G\{[k]} Yj, the
system in G\{[k]} with the highest estimator. Then

{Y[k] ≥ max{Y〈|B|−m+2〉, Y〈|B|+1〉 − d} and ∃j ∈ G\{[k]} s.t. Yj > Yk} ⊆ {Yj′ ≥ max{Y(k−m+1), Y(k) − d}}
= {j′ ∈ I}.

Since j′ ∈ G\{[k]}, both events on the right-hand side of Equation (10) are contained in the
event of good selection. Thus

Pµ{Y[k] ≥ max{Y〈|B|−m+2〉, Y〈|B|〉 − d}} ≤ Pµ(GS),

from which it follows that Pµ(GS) ≥ 1− α for every µ. �
Proof of Condition (C8) in Theorem 4 for pairwise comparisons. Fix an arbitrary con-

figuration µ and define the subsets G and B and the configuration µ∗ accordingly. Then

1− α ≤ Pµ∗(CS) = Pµ∗(GS)

= Pµ∗{Y ∗[k] ≥ Y ∗j −W ∗
[k]j for all j 6= [k]}

≤ Pµ∗{Y ∗[k] ≥ Y ∗j −W ∗
[k]j for all j ∈ B}

= Pµ{Y[k] ≥ Yj −W[k]j for all j ∈ B},

where the last equality follows from Condition (C8) with A = B ∪ {[k]}.
We now partition this last event based on the estimators Yi and the terms W[k]i for

i ∈ G\{[k]}:

{Y[k] ≥ Yj −W[k]j for all j ∈ B}
= {Y[k] ≥ Yj −W[k]j for all j ∈ B and Y[k] ≥ Yi −W[k]i for all i ∈ G\{[k]}}
∪ {Y[k] ≥ Yj −W[k]j for all j ∈ B and ∃i ∈ G\{[k]} s.t. Y[k] < Yi −W[k]i}. (11)

For the first event on the right-hand side of Equation (11),

{Y[k] ≥ Yj −W[k]j for all j ∈ B and Y[k] ≥ Yi −W[k]i for all i ∈ G\{[k]}}
= {Y[k] ≥ Yj −W[k]j for all j 6= [k]}
= {[k] ∈ I}.

30



For the second event on the right-hand side of Equation (11), let i′ := arg maxi∈G\{[k]}{Yi :
Y[k] < Yi−W[k]i}, the index of the system with the highest estimator among those in G\{[k]}
that eliminate System [k]. Following an argument similar to that given by Nelson et al.
[2001], we claim that there exists no other system in G\{[k]} that eliminates System i′.
Towards a contradiction, suppose there was such a System i′′. To eliminate System i′, its
estimator Yi′′ would have to be greater than Yi′ . By the transitive property of eliminations,
System i′′ would also eliminate System [k]. But from how i′ is defined, it has the highest
estimator among the systems in G\{[k]} that eliminate System [k]. Therefore System i′ is
not eliminated by any other i ∈ G\{[k]}. By a similar transitive argument, one can show
that there exists no system in B that eliminates System i′ since that system would also have
eliminated System [k]. Therefore we can conclude that System i′ will be retained in the set
I,

{Y[k] ≥ Yj−W[k]j for all j ∈ B and ∃i ∈ G\{[k]} s.t. Y[k] < Yi−W[k]i} ⊆ {∃i′ ∈ G\{[k]} s.t. i′ ∈ I}

Both events on the right-hand side of Equation (11) are contained in the event of good
selection. Altogether, we have

Pµ{Y[k] ≥ Yj −W[k]j for all j ∈ B} ≤ Pµ(GS),

from which it follows that Pµ(GS) ≥ 1− α for every µ. �

A.6 Proof of Theorem 5

Fix an arbitrary configuration µ and define the subsets G and B and the configuration µ∗

accordingly. Then

1− α ≤ Pµ∗(CS) = Pµ∗(GS) = Pµ∗{[k] ∈ I} ≤ Pµ∗{∃i ∈ G s.t. i ∈ I}.

Let µ(0) := µ and for ` = 1, . . . , |G| − 1 recursively define the related configuration µ(`) by

µ
(`)
[|B|+`] = µ[k]− δ and µ

(`)
i = µ

(`−1)
i for all i 6= [|B|+ `]. Repeatedly applying Condition (C10)

with A = G yields a chain of inequalities,

Pµ∗{∃i ∈ G s.t. i ∈ I} = Pµ(|G|−1){∃i ∈ G s.t. i ∈ I}
≤ Pµ(|G|−2){∃i ∈ G s.t. i ∈ I}
≤ · · ·
≤ Pµ(1){∃i ∈ G s.t. i ∈ I}
≤ Pµ{∃i ∈ G s.t. i ∈ I}
= Pµ(GS).

from which it follows that Pµ(GS) ≥ 1− α for every µ. �
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Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of A/B testing.
In Proceedings of the 27th Conference on Learning Theory (COLT), 2014.
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